/*
* 面试题43:从1到n整数中1出现的次数:O(logn)算法
* 题目:求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?
* 为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。
* ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数(从1 到 n 中1出现的次数)
* 思路:考虑将n的十进制的每一位单独拿出讨论,每一位的值记为weight。
* 若weight为0,则1出现次数为round*base
* 若weight为1,则1出现次数为round*base+former(该位之前的数)+1
* 若weight大于1,则1出现次数为rount*base+base
* 比如:
534 = (个位1出现次数)+(十位1出现次数)+(百位1出现次数)=(53*1+1)+(5*10+10)+(0*100+100)= 214
530 = (53*1)+(5*10+10)+(0*100+100) = 213
504 = (50*1+1)+(5*10)+(0*100+100) = 201
514 = (51*1+1)+(5*10+4+1)+(0*100+100) = 207
10 = (1*1)+(0*10+0+1) = 2
*/
public class No43NumberOf1Between1AndN_Solution {
public static void main(String[] args) {
No43NumberOf1Between1AndN_Solution n = new No43NumberOf1Between1AndN_Solution();
System.out.println(n.NumberOf1Between1AndN_Solution(12));
}
public int NumberOf1Between1AndN_Solution(int n) {
if (n < 1) {
return 0;
}
int base = 1;
int round = n;
int count = 0;
while (round > 0) {
int weight = round % 10;
round /= 10;
count += round * base;
if (weight == 1) {
count += (n%base) + 1;
} else if (weight > 1) {
count += base;
}
base *=10;
}
return count;
}
}
面试题43:从1到n整数中1出现的次数:O(logn)算法
最新推荐文章于 2023-12-31 17:32:35 发布