M-Tree for Similarity Search

本文概述了作者近期在M-树领域的研究工作,M-树是一种度量树,仅考虑对象之间的相对距离。文章详细介绍了M-树的特点,如平衡性、叶节点包含所有对象、动态插入等,并讨论了如何利用三角不等式提高性能,以及如何在高维空间中充分利用存储的距离信息。此外,文章还提供了多个相关资源供读者深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

My current area of research is similarity search. Just like the normal search process, we need several data structures to make the similarity search effectively and efficiently, which should support the range query and KNN at least. In this essay, I would like to sum up my recent research in M-Tree, which is a kind of metric tree (only considering relative distances between objects).

Firstly, let us see the example, which is copied from the book 《Similarity Search-The Metric Space Approach》, written by Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal and Michal Batko.


Obviously, it is a two dimensional space and we can abstract these objects, ranging from O1 to O11 in the vector space. Additionally, to compute the relative distances, euclidean distance is often used. In this data structure, internal nodes including root node, in which each entry consists of radius representing its area and the distance between itself and its parent object (0 for root), while as for the leaf nodes, radii are always 0 instead.  

The features of M-Tree can be concluded:

1. Balanced.

2. All of its objects are listed in the leaf nodes.

3. Dynamic, meaning insertion is possible without reorganization the whole tree.

4. Most importantly, it bases on the secondary memory, able to process large data.

However, to further improve the performance of M-Tree, triangle inequality is also applied to diminish the computing as distance computing in high dimensional space is rather time-consuming. Fully employing the distances stored in the entries can contribute it totally.

Note that euclidean distance is not the only way to measure the distance. Only if the distance meets the requirement of non-negativity, symmetry as well as triangle inequality can we employ it as the distance in M-Tree.

Several useful materials are listed below:

1. http://www-db.deis.unibo.it/Mtree/ (below are most relative ones)

2. P. Ciaccia, M. Patella, F. Rabitti, and P. Zezula. Indexing metric spaces with M-tree. In Atti del Quinto Convegno Nazionale SEBD, Verona, Italy, June 1997.

3. P. Ciaccia, and M. Patella. Bulk loading the M-tree. In Proceedings of th 9th Australasian Database Conference (ADC'98), Perth, Australia, February 1998.

4. M. Patella. Similarity Search in Multimedia Databases. PhD thesis, Dipartimento di Elettronica Informatica e Sistemistica, Università degli Studi di Bologna, Bologna, Italy, February 1999.


### 使用Python计算图像相似度 要实现基于SIFT算法的图像相似度计算,可以通过以下方式完成: #### SIFT算法简介 SIFT(Scale-Invariant Feature Transform)是一种用于检测和描述局部特征的强大工具。它能够提取出具有尺度不变性和旋转不变性的关键点及其描述符[^1]。 #### OpenCV中的SIFT接口 在OpenCV库中已经实现了SIFT算法的相关功能,可以直接调用`cv2.xfeatures2d.SIFT_create()`来创建SIFT对象并提取图像的关键点和描述符[^2]。 #### 图像匹配流程 为了找到两幅图像之间的相似度,可以按照以下逻辑操作: 1. 提取每张图像的关键点和描述符。 2. 利用FLANN(Fast Library for Approximate Nearest Neighbors)或其他匹配器进行描述符匹配。 3. 应用Lowe's Ratio Test进一步筛选掉可能存在的误匹配点[^3]。 4. 计算最终匹配点的数量或者比例作为衡量标准之一。 以下是完整的代码示例: ```python import cv2 import numpy as np def compute_similarity(image_path1, image_path2): # 加载图片为灰度模式 img1 = cv2.imread(image_path1, 0) img2 = cv2.imread(image_path2, 0) # 创建SIFT实例 sift = cv2.xfeatures2d.SIFT_create() # 获取关键点与描述子 kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # FLANN参数配置 flann_index_kdtree = 1 index_params = dict(algorithm=flann_index_kdtree, trees=5) search_params = dict(checks=50) # 配置FLANN匹配器 flann = cv2.FlannBasedMatcher(index_params, search_params) # 进行knnMatch获取两个最近邻居 matches = flann.knnMatch(des1, des2, k=2) good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: # Lowe's ratio test with threshold of 0.7 good_matches.append(m) similarity_score = len(good_matches) / max(len(kp1), len(kp2)) # 归一化得分 return similarity_score # 测试函数 similarity = compute_similarity('image1.jpg', 'image2.jpg') print(f'Image Similarity Score: {similarity:.2f}') ``` 此脚本定义了一个名为`compute_similarity`的功能模块,接受两条路径输入分别指向待比较的两张照片文件位置;接着运用上述提到的技术手段得出它们之间某种程度上的“相像指数”。 ### 注意事项 - 上述方法依赖于安装有opencv-contrib-python包才能正常使用SIFT特性,因为基础版Opencv并不包含这部分高级内容。 - 实际应用过程中需注意版权问题以及专利限制情况下的合法合规性考量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值