100天搞定机器学习|Day13-14 SVM的实现

该博客记录了100天搞定机器学习的学习历程,涵盖数据预处理、简单线性回归分析、多元线性回归、逻辑回归、K - NN、支持向量机等内容。还介绍了使用Scikit - Learn中的SVC分类器实现SVM的步骤,包括导入库、数据,拆分数据集等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习100天|Day1数据预处理

100天搞定机器学习|Day2简单线性回归分析

100天搞定机器学习|Day3多元线性回归

100天搞定机器学习|Day4-6 逻辑回归

100天搞定机器学习|Day7 K-NN

100天搞定机器学习|Day8 逻辑回归的数学原理

100天搞定机器学习|Day9-12 支持向量机

100天搞定机器学习|Day11 实现KNN

昨天我们学习了支持向量机基本概念,重申数学推导原理的重要性并向大家介绍了一篇非常不错的文章。今天,我们使用Scikit-Learn中的SVC分类器实现SVM。我们将在day16使用kernel-trick实现SVM。

导入库

import numpy as np import matplotlib.pyplot as plt import pandas as pd

导入数据

数据集依然是Social_Network_Ads,下载链接:

https://pan.baidu.com/s/1cPBt2DAF2NraOMhbk5-_pQ

提取码:vl2g

dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values

拆分数据集为训练集合和测试集合

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

特征量化

from sklearn.preprocessing import StandardScaler 
sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.fit_transform(X_test)

适配SVM到训练集合

from sklearn.svm import SVC 
classifier = SVC(kernel = 'linear', random_state = 0) classifier.fit(X_train, y_train)

预测测试集合结果

y_pred = classifier.predict(X_test)

创建混淆矩阵

from sklearn.metrics import confusion_matrix 
cm = confusion_matrix(y_test, y_pred)

 

训练集合结果可视化

from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('SVM (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

 

测试集合结果可视化

from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('SVM (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值