READING NOTE: Joint Tracking and Segmentation of Multiple Targets

本文提出了一种新的CRF模型,通过结合高级检测响应和低级超级像素信息,实现未知数量目标的全自动化分割和跟踪。该方法在每个时间步骤提供完整的状态表示,能够处理遮挡情况,并在解决数据关联问题时通过优化目标函数来实现高效运行。尽管存在求解CRF问题速度较慢的问题,但模型能够提供高召回率,即使在不完全可靠的检测结果存在的情况下,分割仍然能提供有价值的信息。同时,将多目标跟踪问题建模为图模型,可以利用现有的优化算法。

TITLE: Joint Tracking and Segmentation of Multiple Targets

AUTHOR: Milan, Anton and Leal-Taixe, Laura and Schindler, Konrad and Reid, Ian

FROM: CVPR2015

CONTRIBUTIONS

  1. A new CRF model taking advantage of both high-level detector responses and low-level superpixel information
  2. Fully automated segmentation and tracking of an unknown number of targets.
  3. A complete state representation at every time step could handle occlusions

METHOD

  1. Generate an overcomplete set of trajectory hypotheses.
  2. Solve data association problem by optimizing an objective function, which is a multi-label conditional random field (CRF).
SOME DETAILS

这里写图片描述

The goal is to find the most probable labeling for all nodes given the observations, which is equivalent to

v=argminvE(ν)

in which

E(ν)=sνSϕνS(s)+dνDϕνD(d)+(v,w)εψ(v,w)+ψλ

where ϕνS and ϕνD are unary potential functions for superpixel and detection nodes, respectively, measuring the cost of one detection node in νD or one superpixel node in νS belonging to a certain target; ψ(v,w) is pairwise edges among superpixels and detections, including spacial and temporal information among superpixels and information among superpixels and detections in the same frame; ψλ is trajectory cost, containing several constrains of height, shape, dynamics, persistence, image likelihood and parsimony.

ADVANTAGES

  1. Taking pixel (superpixel) level information in addition to detection results into consideration could handle partial occlusions, which would lead to higher recall.
  2. Segments could provide considerable information even no reliable detection result exists.
  3. Modeling multi-targets tracking problem to graph model could take advantage of existing optimization algorithms.

DISADVANTAGES

  1. Solving CRF problem is slow, needing 12 seconds per frame.
  2. Can not handle ID switch in two adjacent temporal slidewindows.

OTHER

  1. Tracking-by-detection has proven to be the most successful strategy to address multi-target tracking problem.
  2. Noise and imprecise measurements, long-term occlusions, complicated dynamics and target interactions all contributes to the problem’s complexity.
03-08
### MathPix工具介绍 Mathpix Snipping Tool 是一款强大的数学公式识别工具,从最初的原型发展至今已经历了多次迭代和功能增强[^1]。该工具不仅能处理简单的数学表达式,还可以应对复杂的数学模型以及多行公式,并且支持手写公式的识别。 这款应用程序通过不断的科技创新与用户反馈改进,在学术研究和技术领域赢得了良好声誉,成为许多科研人员不可或缺的工作伙伴之一。除了基本的功能外,Mathpix 还提供了多种高级特性来满足不同用户的特定需求。 ### 使用方法 #### 安装与启动 为了使用 Mathpix Snipping Tool ,首先需要下载安装程序并按照提示完成设置过程。一旦成功安装后即可随时调用此应用来进行截图操作。 #### 截取屏幕上的公式图像 当遇到想要转换成 LaTeX 或 AsciiMath 的图片时,只需打开软件界面按下快捷键(默认为 `Ctrl+Alt+M`),此时鼠标指针会变为十字形状以便于选取目标区域;框选所需部分之后松开按键即刻上传至云端服务器等待进一步分析处理。 #### 获取LaTeX代码片段 经过短暂几秒钟的时间延迟过后,所截获的内容将以纯文本形式显示出来供复制粘贴到其他编辑器当中继续编写文档或是分享给他人查看交流之用。 ```python import pyperclip # 假设已获取到LaTeX字符串 stored_in_variable named latex_code pyperclip.copy(latex_code) print("LaTeX code has been copied to clipboard.") ``` 对于希望深入探索更多可能性的用户来说,可以考虑查阅官方提供的扩展插件——如用于解析Markdown文件内的公式标记语法的库 **mathpix-markdown-it** [^2] ——这将进一步提升工作效率和个人体验感。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值