史上代码最少的协同过滤推荐引擎(R语言实现)

本文介绍了一种使用R语言实现的基于项目的协同过滤推荐算法,该算法通过向量化操作减少了循环结构,提供了高效的数据处理方式。详细阐述了如何从源数据文件中解析用户与项目的交互信息,并应用此算法进行推荐。适用于初学者了解协同过滤的基本原理及实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R实现的item-based CF推荐算法:

除去注释,有效代码只有16行。其中大量运用了向量化的函数与处理方式,所以没有任何的显式循环结构,关于向量化更详细的叙述可看这里

注:该代码实现的只是最基本算法,仅作参考,不承诺在大规模与复杂数据环境下的实用性。

源数据文件data.dat的内容如下所列:

user_id,subject_id
1,1
1,3
1,7
1,13
2,2
2,5
2,6
2,7
2,9
2,10
2,11
3,1
3,2
3,3
3,4
3,7
3,9
3,10
5,13
6,1
6,3
6,4
6,5
6,8
6,10
8,1
8,2
8,3
8,5
8,6
8,7
8,8
9,13
10,12
11,2
11,3
11,4
11,6
11,8
11,9
11,13
12,12
13,3
13,6
13,7
15,4
15,12
15,13
16,2
16,3
16,4
16,7
16,8
17,2
17,3
17,4
17,5
17,6
17,7
17,8
17,9
17,10
17,11
18,2
18,3
19,2
19,3
19,5
19,6
19,9
19,10
19,11
19,12
20,1
20,3
20,4
20,7
20,13
21,1
21,6
21,8
21,9
21,11
21,12
21,13
22,6
23,2
23,4
23,9
23,12
24,1
24,5
24,9
25,2
25,6
25,10
25,11
26,2
26,3
26,8
27,3
27,6
27,12
27,13
28,1
28,2
28,3
28,5
28,7
28,9
28,10
28,11
28,12
28,13
29,1
29,2
29,3
29,4
29,5
29,6
29,7
29,8
29,9
29,10
30,6
30,7
30,9
30,13
31,6
31,11
32,1
32,5
33,2
33,13
34,3
34,7
34,8
34,9
34,10
34,13
35,3
35,4
35,5
35,6
35,7
36,2
36,3
36,4
36,6
36,7
36,8
36,9
36,11
36,12
36,13
38,5
41,1
41,3
41,4
41,5
41,6
41,7
41,11
42,2
42,3
42,7
42,8
42,9
42,10
42,11
43,2
43,6
43,10
43,11
43,12


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值