note: weak, sparse, high-dimensional signal

本文探讨了高维参数空间的概念及其在统计学习中的应用,特别是在参数向量中存在大量零元素的情况。文章强调了在高维稀疏问题中估计参数的可能性,并介绍了使用正则化似然函数的方法,如岭回归和LASSO,通过引入不同的先验分布来实现噪声压缩和信号保持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. Reminder of key notions. High dimensional parameter space means : p>>np>>np>>n. Sparsity: the parameter vector has many zero elements. It means the parameter resides in a subspace. When the subspace dimension is smaller than nnn, the parameter is estimable.
  2. In a sparse high-dimensional (SHD) problem, one does not know the location of the zeros; otherwise the parameter can be directly cast to the lower dimensional subspace.
  3. Penalized log-likelihood can be interpreted as a posterior log density. The ridge log-likelihood is interpreted as the result of using a normal prior; lasso a Laplace prior. The key insight of this method is to use a zero-inflated prior to shrink noise and a fat-tailed prior to preserve signal.
  4. Scale mixture of normals. X=YσX=Y\sigmaX=Yσ where YYY is a standard normal and σ\sigmaσ is a continuous random variable on (0,∞)(0,\infty)(0,). [West 1987 Biometrika paper]. A lot of well-known distributions are in this family: t, logistic, Laplace, and obviously, the instantaneous distribution generated by the stochastic vol Brownian motion in finance.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值