
机器学习
Jorocco
爬行者!
展开
-
机器学习算法总结(二)
1、KNN算法 KNN是通过测量不同特征值之间的距离进行分类。它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 在KNN中,通过计算对象间...原创 2018-08-30 19:36:55 · 803 阅读 · 0 评论 -
机器学习算法总结(三)
1、决策树 决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。 1.2 决策树的学习过程 一棵决策树的生成过程主要分为以下3个部分: 特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而...原创 2018-08-30 21:10:30 · 1890 阅读 · 0 评论