Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:
9
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
#include <string>
#define Max 100010
using namespace std;
int main()
{
int n,S[Max];
scanf("%d",&n);
int f=n-1;
int m=0,l;
for(int i=0;i<n;i++)
{
scanf("%d",&S[i]);
if(S[i]==i) f--;
}
while(f>0)
{
if(S[0]==0) //0在本位
{
int k=1;
while(k<n)
{
if(S[k]!=k)
{
swap(S[0],S[k]);
m++;
break;
}
k++;
}
}
else if(S[0]!=0)
{
swap(S[0],S[S[0]]);
m++;
f--;
}
}
printf("%d\n",m);
system("pause");
return 0;
}