#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "arm_math.h"
#include "stdio.h"
#include <stdlib.h>
#include "math_helper.h"
//#include "systemclk.h"
#include "delay.h"
//#include "led.h"
#include "key.h"
//#include "usart.h"
//#include "lcd.h"
#include "ad9833.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint16_t BL = 24;
float32_t TB[24] = {
0.0013 ,
0.0056 ,
-0.0086 ,
-0.0048 ,
0.0218 ,
-0.0093 ,
-0.0332 ,
0.0456 ,
0.0245 ,
-0.1186 ,
0.0638 ,
0.5119 ,
0.5119 ,
0.0638 ,
-0.1186 ,
0.0245 ,
0.0456 ,
-0.0332 ,
-0.0093 ,
0.0218 ,
-0.0048 ,
-0.0086 ,
0.0056 ,
0.0013
};
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
//#define FFT_LENGTH 1024
//
//#define ADC1_DMA_Size 1024 //ADC????
//#define SAM_FRE 100000 //???
//
// float fft_outputbuf_win[FFT_LENGTH];
// float fir_inputbuf[FFT_LENGTH]={0};
// float fir_outputbuf[FFT_LENGTH]={0};
// uint32_t ADC1_ConvertedValue[ ADC1_DMA_Size ];
// unsigned char flag;
// unsigned int i;
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define TEST_LENGTH_SAMPLES 320
/*
This SNR is a bit small. Need to understand why
this example is not giving better SNR ...
*/
#define SNR_THRESHOLD_F32 75.0f
#define BLOCK_SIZE 320
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Must be a multiple of 16 */
#define NUM_TAPS_ARRAY_SIZE 32
#else
#define NUM_TAPS_ARRAY_SIZE 29
#endif
#define NUM_TAPS 29
/* -------------------------------------------------------------------
* The input signal and reference output (computed with MATLAB)
* are defined externally in arm_fir_lpf_data.c.
* ------------------------------------------------------------------- */
extern float32_t testInput_f32_1kHz_15kHz[TEST_LENGTH_SAMPLES];
extern float32_t refOutput[TEST_LENGTH_SAMPLES];
/* -------------------------------------------------------------------
* Declare Test output buffer
* ------------------------------------------------------------------- */
static float32_t testOutput[TEST_LENGTH_SAMPLES];
/* -------------------------------------------------------------------
* Declare State buffer of size (numTaps + blockSize - 1)
* ------------------------------------------------------------------- */
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
static float32_t firStateF32[2 * BLOCK_SIZE + NUM_TAPS - 1];
#else
static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1];
#endif
/* ----------------------------------------------------------------------
** FIR Coefficients buffer generated using fir1() MATLAB function.
** fir1(28, 6/24)
** ------------------------------------------------------------------- */
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
const float32_t firCoeffs32[NUM_TAPS_ARRAY_SIZE] = {
-0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.0000000000f, -0.0173976984f,
-0.0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.2504960933f, +0.2229246956f,
+0.1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, -0.0341458607f, -0.0173976984f, -0.0000000000f, +0.0085302217f,
+0.0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f, 0.0f,0.0f,0.0f
};
#else
const float32_t firCoeffs32[NUM_TAPS_ARRAY_SIZE] = {
-0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.0000000000f, -0.0173976984f,
-0.0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.2504960933f, +0.2229246956f,
+0.1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, -0.0341458607f, -0.0173976984f, -0.0000000000f, +0.0085302217f,
+0.0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f
};
#endif
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;
float32_t snr;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM3_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
//float32_t snr;
//uint32_t blockSize = 1024; //?????,?ADC???????
//
//float32_t pState[1047]={0.0f}; //FIR?????????:?????=BL+blockSize-1 = 1024 + 24 -1 = 1047
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
uint8_t buf[16];
uint16_t key;
uint8_t cnt = 0;
uint8_t Wave_Type = AD9833_Out_Sinus;
uint32_t Wave_Fre = 100;
float CH1_Phase = 0; // ???0~360
float CH2_Phase = 0; // ???0~360
HAL_Init(); // ??'??HAL??
SystemClock_Config(); // ?????????72MHz
Delay_Init(180); // ??'?????????
//LED_Init(); // ??'??LED
KEY_Init(); // ??'??????
//Usart_Init(115200); // ??'??????
// LCD_Init(); // ??'??LCD
AD9833_Init(); // AD9833???u?'??
// Point_Color = RED;
//LCD_Clear(WHITE);
//LCD_Show_String(10, 40 , 240, 24, 24, "AD9833_2CH Test", RED);
//LCD_Show_String(10, 160 , 240, 16, 16, "K1: + Frequency", MAGENTA);
//LCD_Show_String(10, 180 , 240, 16, 16, "K2: + Phase", MAGENTA);
//LCD_Show_String(10, 200 , 240, 16, 16, "K3: Set Wave Type", MAGENTA);
//if(Wave_Type == AD9833_Out_Sinus)
//{
//LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: Sine ", BLUE);
//printf("Wave Type: Sine\r\n");
// }
//else if(Wave_Type == AD9833_Out_Triangle)
// {
// LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: Triangle", BLUE);
// }
// else if(Wave_Type == AD9833_Out_Msb)
//{
// LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: square ", BLUE);
// printf("Wave Type: square\r\n");
// }
//else if(Wave_Type == AD9833_Out_Msb2)
//{
// LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: square ", BLUE);
//}
//sprintf((char *)buf,"Wave Fre : %9dHz ",Wave_Fre);
//LCD_Show_String(10, 100, 240, 16, 16, (char *)buf, BLUE);
//printf("%s\r\n",buf);
//sprintf((char *)buf,"Wave Phase: %5.1f ",CH2_Phase);
//LCD_Show_String(10, 120, 240, 16, 16, (char *)buf, BLUE);
// printf("%s\r\n",buf);
/* 10.73742 = 2^28/25000000, ????25000000??g????l???25MHz */
AD9833_Set_Phase(Wave_Type, (uint32_t)(Wave_Fre * 10.73742), CH1_Phase, CH2_Phase);
while (1)
{
key=KEY_Scan();
if(key == K1_PRES) // ?i????
{
if(Wave_Fre <10000)
Wave_Fre += 1000;
else if(Wave_Fre <100000)
Wave_Fre += 10000;
else if(Wave_Fre <1000000)
Wave_Fre += 100000;
else if(Wave_Fre <10000000)
Wave_Fre += 1000000;
else
Wave_Fre = 1000;
sprintf((char *)buf,"Wave Fre %9dHz ",Wave_Fre);
//LCD_Show_String(10, 100, 240, 16, 16, (char *)buf, BLUE);
printf("%s\r\n",buf);
/* 10.73742 = 2^28/25000000, ????25000000??g????l???25MHz */
AD9833_Set_Frequency(AD9833_ALL, Wave_Type, (uint32_t)(Wave_Fre * 10.73742)); // ????????????
}
else if(key == K2_PRES) // ?i????
{
if(CH2_Phase >= 360)
CH2_Phase = 0;
else
CH2_Phase += 10;
sprintf((char *)buf,"Wave Phase: %5.1f ",CH2_Phase);
// LCD_Show_String(10, 120, 240, 16, 16, (char *)buf, BLUE);
printf("%s\r\n",buf);
AD9833_Set_Phase(Wave_Type, (uint32_t)(Wave_Fre * 10.73742), CH1_Phase, CH2_Phase);
}
else if(key == K3_PRES) // ?i???????
{
if(Wave_Type == AD9833_Out_Sinus)
{
Wave_Type = AD9833_Out_Triangle;
// LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: Triangle", BLUE);
printf("Wave Type: Triangle\r\n");
}
else if(Wave_Type == AD9833_Out_Triangle)
{
Wave_Type = AD9833_Out_Msb;
// LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: square ", BLUE);
printf("Wave Type: square\r\n");
}
else if(Wave_Type == AD9833_Out_Msb)
{
Wave_Type = AD9833_Out_Msb2;
// LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: square2 ", BLUE);
printf("Wave Type: square2\r\n");
}
else if(Wave_Type == AD9833_Out_Msb2)
{
Wave_Type = AD9833_Out_Sinus;
// LCD_Show_String(10, 80 , 240, 16, 16, "Wave Type: Sine ", BLUE);
printf("Wave Type: Sine\r\n");
}
/* 10.73742 = 2^28/25000000, ????25000000??g????l???25MHz */
AD9833_Set_Phase(Wave_Type, (uint32_t)(Wave_Fre * 10.73742), CH1_Phase, CH2_Phase);
}
cnt++;
if(cnt > 100)
{
//LED1_TOGGLE;
cnt = 0;
}
Delay_ms(10);
}
/* USER CODE BEGIN 1 */
float32_t data=0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
//SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM3_Init();
MX_USART1_UART_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
uint32_t i;
arm_fir_instance_f32 S;
arm_status status;
float32_t *inputF32, *outputF32;
/* Initialize input and output buffer pointers */
inputF32 = &testInput_f32_1kHz_15kHz[0];
outputF32 = &testOutput[0];
/* Call FIR init function to initialize the instance structure. */
arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32[0], &firStateF32[0], blockSize);
/* ----------------------------------------------------------------------
** Call the FIR process function for every blockSize samples
** ------------------------------------------------------------------- */
for(i=0; i < numBlocks; i++)
{
arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
}
/* ----------------------------------------------------------------------
** Compare the generated output against the reference output computed
** in MATLAB.
** ------------------------------------------------------------------- */
snr = arm_snr_f32(&refOutput[0], &testOutput[0], TEST_LENGTH_SAMPLES);
printf("SNR :%f\n",snr);
status = (snr < SNR_THRESHOLD_F32) ? ARM_MATH_TEST_FAILURE : ARM_MATH_SUCCESS;
// if (status != ARM_MATH_SUCCESS)
// {
//#if defined (SEMIHOSTING)
// printf("FAILURE\n");
//#else
// while (1); /* main function does not return */
//#endif
// }
// else
// {
//#if defined (SEMIHOSTING)
// printf("SUCCESS\n");
//#else
// while (1); /* main function does not return */
//#endif
// }
// data=arm_sin_f32(3.1415926/6);//sin(30)
// arm_fir_instance_f32 *S;//FIR??????
// HAL_TIM_Base_Start(&htim3);
// HAL_ADC_Start_DMA(&hadc1,(uint32_t*)ADC1_ConvertedValue,ADC1_DMA_Size);
// printf("init_ok\r\n");
//
// S = (arm_fir_instance_f32 *)malloc(sizeof(arm_fir_instance_f32)); //??????S
// arm_fir_init_f32(S,BL,TB,pState,blockSize);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_GPIO_TogglePin(LED_R_GPIO_Port, LED_R_Pin);
HAL_Delay(1000);
//// if(flag==1)
// {
//
// flag=0;
// HAL_Delay(1000);
// printf("/**************************************/\r\n");
// //S = (arm_fir_instance_f32 *)malloc(sizeof(arm_fir_instance_f32)); //??????S
// if (S == NULL) //?????????
// {
// printf("error\r\n");
// }
//
//
// for(i=0;i<FFT_LENGTH;i++)
// {
// fir_inputbuf[i]=(float)ADC1_ConvertedValue[ i ]*3.3/4096; //?ADC???????????fir_inputbuf?????
// }
// arm_fir_f32(S,fir_inputbuf,fir_outputbuf,blockSize);
//
// //free(S); // ????
// //S = NULL; // ?????? NULL,???????
// for(i=0;i<FFT_LENGTH;i++)
// {
// printf("%f,%f\r\n",(float)ADC1_ConvertedValue[i]*3.3/4096,fir_outputbuf[ i ]);
// }
// }
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 15;
RCC_OscInitStruct.PLL.PLLN = 216;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_16BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 29;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 300;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_R_GPIO_Port, LED_R_Pin, GPIO_PIN_SET);
/*Configure GPIO pin : LED_R_Pin */
GPIO_InitStruct.Pin = LED_R_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LED_R_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
int fputc(int ch, FILE *fp)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xffff);
return ch;
}
int fgetc(FILE *fp)
{
uint8_t ch = 0;
HAL_UART_Receive(&huart1, &ch, 1, 0xffff);
return ch;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
这是main.c代码,如何根据以上问题修改?