- 博客(7)
- 收藏
- 关注
转载 K-Means算法和实现代码
在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。问题K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法K-Means要
2014-05-13 17:09:13
818
转载 C4.5算法的分析和实现
基于决策树技术的数据挖掘方法分析和研究——C4.5算法的分析和实现摘要大数据时代已经到来,对数据的处理越来越受到人们的关注,人们迫切需要海量数据背后的重要信息和知识,发现数据中存在的关系和规则,获取有用的知识,并且根据现有数据对未来的发展做出预测。决策树分类算法C4.5算法是数据挖掘中最常用、最经典的分类算法,能够以图形化的形式表现挖掘的结果,从而方便于使用者快速做出决定或预测。决策树
2014-05-08 17:30:07
16440
1
转载 数据挖掘十大经典算法
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.不仅仅是选中的十大算法,其实参加评选的18种算法,
2014-05-08 14:12:34
631
转载 Apriori算法介绍--附java源程序
1 Apriori介绍Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。其中,Apriori算法具有这样一条性
2014-05-04 14:44:05
891
转载 关联分析算法Apriori介绍
Apriori算法其名字是因为算法基于先验知识(prior knowledge).根据前一次找到的频繁项来生成本次的频繁项。Apriori是关联分析中核心的算法。Apriori算法的特点只能处理分类变量,无法处理数值型变量;数据存储可以是交易数据格式(事务表),或者是事实表方式(表格数据);算法核心在于提升关联规则产生的效率而设计的。Aprior
2014-05-04 14:29:22
1052
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人