WEB3.0定义与未来发展趋势

编辑导语:从1989年伯纳斯提出万维网的概念开始到现在,已经经历了Web1.0、Web2.0、Web3.0。那么,究竟是如何从Web1.0发展到Web3.0的呢?本篇文章据此展开了一系列分析,感兴趣的小伙伴们快来一起看看吧。

网络已经发展了三十多年,慢慢地将我们从Web1.0的早期静态文本和图像,一直带到Web2.0的兴起,直到我们今天所知道的互联网——一个由中心化平台主导的互联网。
关于究竟什么是Web3.0,目前尚未有人能清晰地定义它,更多地只是作为一个概念性词汇存在。
在一些人看来,Web3.0代表的是未来互联网发展的一种新趋势,涉及去中心化,用户对数据和信息拥有实际的掌控权。
马斯克近期也谈到了对Web3.0的看法,他认为元宇宙、Web3.0这些在目前看来更像是营销术语,是投机者借机炒作制造的泡沫。
从比特币、区块链、NFT、到以太坊,各路公链不断崛起,DApp、DAO、IOT、earn 这些新概念也应运而生。
一、从 Web1.0 到 Web2.0
1989年,伯纳斯提出了万维网的概念。
这从根本上改变了,互联网服务只是一个个“信息孤岛”组装的认知。
确切地说,Web1.0的静态页面是万维网发展的第一个阶段,媒体形式以新浪、搜狐、雅虎、百度这类门户网站为主,某些特定的群体或企业将信息单向发布至网络,投喂给用户浏览阅读。
换句话说,Web1.0只解决了用户获得信息并阅读的需求,在这个过程中,用户只能被动接收网站发布的无差异信息,但不能上传自己的反馈、进行和其他人的线上实时沟通,网站和受众处在极其不平等的状态。
到了Web2.0(约 2000 年之后),变成了可读也可写、交互性强的互联网。
此时,用户既是网络信息的接收者也是发布者,人们可以通过网络进行双向、多向交流。
从网站门户到个人门户,从信息线上化到用户线上化,Web2.0形成了以人为中心的传播和交互方式,也助推了社交网络的兴起。
软件也开始跳出PC端,微信、微博、抖音等APP相继出现。
但事实上,Web2.0仍是中心化的一个网络形态,互联网平台掌控着用户数据和信息,经营着用户群,存在一定的信息泄露和丢失风险,收集用户数据成为标准做法——通常隐藏在表面上的“免费”服务背后,

基于 NSFW Model 色情图片识别鉴黄 后面更新视频检测 项目背景: 随着互联网的快速发展,网络上的信息量呈现出爆炸式的增长。然而,互联网上的内容良莠不齐,其中不乏一些不良信息,如色情、暴力等。这些信息对青少年的健康成长和社会风气产生了不良影响。为了净化网络环境,保护青少年免受不良信息的侵害,我国政府加大了对网络内容的监管力度。在此背景下,本项目应运而生,旨在实现对网络图片和视频的自动识别与过滤,助力构建清朗的网络空间。 项目简介: 本项目基于 NSFW(Not Safe For Work)Model,利用深度学习技术对色情图片进行识别与鉴黄。NSFW Model 是一种基于卷积神经网络(CNN)的图像识别模型,通过学习大量的色情图片和非色情图片,能够准确地判断一张图片是否含有色情内容。本项目在 NSFW Model 的基础上,进一步优化了模型结构,提高了识别的准确率和效率。 项目功能: 色情图片识别:用户上传图片后,系统会自动调用 NSFW Model 对图片进行识别,判断图片是否含有色情内容。如果含有色情内容,系统会给出相应的提示,并阻止图片的传播。 视频检测:针对网络视频,本项目采用帧提取技术,将视频分解为一帧帧图片,然后使用 NSFW Model 对这些图片进行识别。如果检测到含有色情内容的图片,系统会给出相应的提示,并阻止视频的传播。 实时监控:本项目可应用于网络直播、短视频平台等场景,实时监控画面内容,一旦检测到含有色情内容的画面,立即进行屏蔽处理,确保网络环境的纯洁。
### 如何在本地部署 NSFW 模型或服务 要在本地环境中成功部署 NSFW(不适宜工作场合内容)检测模型或服务,以下是详细的说明: #### 准备环境 为了确保能够顺利运行模型和服务,需要安装必要的依赖项。这些工具和库包括但不限于以下几类: - **Python 环境**: 推荐使用 Python 3.7 或更高版本。 - **Transformers 库**: 提供加载预训练模型的功能[^1]。 - **PyTorch/TensorFlow**: 支持深度学习框架的计算需求。 - **Pillow (PIL)**: 处理图像文件并将其转换为适合输入模型的形式。 具体命令如下所示: ```bash pip install transformers torch Pillow ``` #### 加载模型与测试 通过 Hugging Face 的 `transformers` 工具包可以直接访问已有的 NSFW 图片分类模型。例如,可以采用名为 `"Falconsai/nsfw_image_detection"` 的公开模型来完成此任务[^1]。 下面是一个简单的代码片段展示如何加载该模型并对单张图片执行预测操作: ```python from PIL import Image from transformers import pipeline def classify_nsfw(image_path): # 打开指定路径下的图片文件 img = Image.open(image_path) # 初始化 image-classification 流水线对象,并指明使用的特定模型名称 classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection") # 对传入的图片调用流水线方法得到其类别标签及其置信度分数列表形式的结果 result = classifier(img) return result if __name__ == "__main__": test_img_path = "<your_test_image>" output_results = classify_nsfw(test_img_path) print(output_results) ``` 注意替换 `<your_test_image>` 成实际存在的图片绝对或者相对地址字符串值之前再尝试运行以上脚本。 #### 构建 RESTful API 服务 如果希望进一步扩展功能至 Web 应用程序层面,则可考虑利用 Flask/Django 这样的轻量级 web 开发框架构建起支持 HTTP 请求交互的服务端接口。这里给出基于 FastAPI 实现的一个简单例子作为示范用途: ```python import uvicorn from fastapi import FastAPI, File, UploadFile from PIL import Image from io import BytesIO from typing import List from pydantic import BaseModel app = FastAPI() class Prediction(BaseModel): label: str score: float @app.post("/predict/", response_model=List[Prediction]) async def predict(file: UploadFile = File(...)): try: contents = await file.read() pil_image = Image.open(BytesIO(contents)) clf_pipeline = pipeline('image-classification', model='Falconsai/nsfw_image_detection') predictions = clf_pipeline(pil_image) formatted_preds = [{"label": pred['label'], "score": round(pred['score'], 4)} for pred in predictions] return formatted_preds except Exception as e: raise ValueError(f"Error processing uploaded file {e}") if __name__ == '__main__': uvicorn.run(app, host='0.0.0.0', port=8000) ``` 启动服务器之后即可向 `/predict/` 路径发送 POST 请求附带上传待分析的目标图片获取返回结果了。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值