集成学习-Adaboost

Adaboost算法,作为集成学习中的经典算法,通过反复学习,将多个弱分类器组合成强分类器。它通过调整样本权重,使后续分类器关注于难识别的样本,并采用加权多数表决方式组合弱分类器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Adaboost是集成学习中经典的算法之一。Adaboost算法,英文全称为:Adaptive Boosting,即自适应增强,是一种典型的Boosting算法。

对于集成学习,对于给定的数据集,学习到一个较弱的分类器比学习到一个强分类器容易的多,boosting就是从弱学习器出发,反复学习,得到多个弱分类器,最后将这些弱分类器组合成强分类器。

Adaboost算法主要的工作是以下两点。

1. 提高那些被前一轮弱分类器错误分类的样本的权值,而降低那些被正确分类样本的权值.,这样下个分类器就能专注于那些不好识别的样本,针对性的建立分类器。

2. 对于若分类器的组合,Adaboost采取加权多数表决的方式,即加大分类错误率较小的弱分类器的权值,使其在表决中起较大作用,减小分类错误率较高的弱分类器的权值,使其在表决中起较小作用。

算法流程如下所示:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值