Index poisoning attack 分析

本文介绍了两种针对P2Pbotnets的攻击方法:一种是通过发布无效的随机ID来阻止恶意代码传播;另一种则是利用假条目将恶意ID重定向至合法ID,以此保护P2P网络免受恶意攻击。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Way:

用来破坏p2p网络,这里针对P2p botnets:

1 产生bots搜索key的hash

2 产生随机的id,不关联任何文件

3 发布,key=hash, value=random id

4 此时,如果谁请求这个key,将会路由到随机ID,但由于此ID是随机的,不存在的。因此恶意代码是不会被下载的。

5 第二种方法:选择一个副本id,使用fake entries填充,这样恶意ids将会被re-route到合法ids

 

两片文章参考:

1 the index poisoning attack in p2p file-sharing systems

2 peer-to-peer botnets analysis and detection

这一段讲的是什么:Abstract—A recent trojan attack on deep neural network (DNN) models is one insidious variant of data poisoning attacks. Trojan attacks exploit an effective backdoor created in a DNN model by leveraging the difficulty in interpretability of the learned model to misclassify any inputs signed with the attacker’s chosen trojan trigger. Since the trojan trigger is a secret guarded and exploited by the attacker, detecting such trojan inputs is a challenge, especially at run-time when models are in active operation. This work builds STRong Intentional Perturbation (STRIP) based run-time trojan attack detection system and focuses on vision system. We intentionally perturb the incoming input, for instance by superimposing various image patterns, and observe the randomness of predicted classes for perturbed inputs from a given deployed model—malicious or benign. A low entropy in predicted classes violates the input-dependence property of a benign model and implies the presence of a malicious input—a characteristic of a trojaned input. The high efficacy of our method is validated through case studies on three popular and contrasting datasets: MNIST, CIFAR10 and GTSRB. We achieve an overall false acceptance rate (FAR) of less than 1%, given a preset false rejection rate (FRR) of 1%, for different types of triggers. Using CIFAR10 and GTSRB, we have empirically achieved result of 0% for both FRR and FAR. We have also evaluated STRIP robustness against a number of trojan attack variants and adaptive attacks. Index Terms—Trojan attack, Backdoor attack
07-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值