machine learning in action

本文介绍了K-近邻算法(K-Nearest Neighbors, KNN)的特点与工作原理,探讨了其在处理数值和名义值数据时的优势,如高准确度及对外部数据不敏感等特性,并指出了算法存在的缺点,例如计算成本较高和内存消耗大的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

k-Nearest Neighbors
Pros: High accuracy, insensitive to outliers, no assumptions about data
Cons: Computationally expensive, requires a lot of memory

Works with: Numeric values, nominal values


Pseudocode for this function would look like this:

For every point in our dataset:
calculate the distance between inX and the current point
sort the distances in increasing order
take k items with lowest distances to inX
find the majority class among these items
return the majority class as our prediction for the class of inX


When dealing with values that lie in different ranges, it’s common to normalize them.



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值