LeetCode 268. Missing Number(缺失数字)

本文介绍了一种利用异或运算解决寻找数组中缺失数字的问题,算法运行速度快且空间复杂度低。

原题网址:https://leetcode.com/problems/missing-number/

Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the one that is missing from the array.

For example,
Given nums = [0, 1, 3] return 2.

Note:
Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity?

思路:假设0~n数字没有缺失的话,对0~n进行异或,可以得到一个确定的数字,然后对缺失数字的数组进行异或,可以得到另一个数字,这两个数字的异或,就是缺失的数字。

方法:通过异或运算找出缺失的数字。

public class Solution {
    public int missingNumber(int[] nums) {
        int missing = nums.length;
        for(int i=0; i<nums.length; i++) {
            missing ^= nums[i] ^ i;
        }
        return missing;
    }
}

### LeetCode Problem 268 Missing Number LeetCode 的第 268 题名为 **Missing Number**,其题目描述如下: 给定一个包含 `[0, n]` 中 `n` 个数的数组 `nums`,找出其中缺失的那个数字。 #### 示例 ```plaintext 输入: nums = [3,0,1] 输出: 2 解释: 数组中缺少数字 2。 ``` 此问题可以通过多种方法解决,以下是两种常见的解决方案:一种基于求和公式的方法以及另一种利用位运算的技术。 --- #### 方法一:数学公式法 通过计算完整的序列总和减去实际存在的元素之和来找到缺失数字。对于长度为 `n` 的数组,理想情况下应有 `(n * (n + 1)) / 2` 的总和[^6]。 实现代码如下所示: ```python class Solution: def missingNumber(self, nums): expected_sum = len(nums) * (len(nums) + 1) // 2 actual_sum = sum(nums) return expected_sum - actual_sum ``` 这种方法的时间复杂度为 O(n),空间复杂度为 O(1)[^7]。 --- #### 方法二:位运算法 可以使用异或操作符 (`XOR`) 来解决问题。由于 XOR 运算具有交换律和结合律,并且任何数与其本身做 XOR 结果都为零,因此我们可以将索引与数值配对并执行 XOR 操作以得到最终结果[^8]。 具体实现如下: ```python class Solution: def missingNumber(self, nums): xor = 0 i = 0 for i in range(len(nums)): xor ^= i ^ nums[i] return xor ^ i + 1 ``` 该方法同样具备时间复杂度 O(n) 和空间复杂度 O(1) 的特性[^9]。 --- #### 总结 上述两种方式均能有效处理这个问题,选择哪种取决于个人偏好或者特定场景下的需求。如果更关注可读性和简洁性,可能倾向于采用数学公式的方案;而当希望减少溢出风险时,则可以选择位运算的方式。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值