HashMap简介
java.lang.Object
↳ java.util.AbstractMap<K, V>
↳ java.util.HashMap<K, V>
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable { }
![]()
HashMap是一个散列表,存储的是键值对映射。它的实现不是同步的,也就是不是线程安全的。它的key-value可以定为null。同时存储的数据是无序的。
HashMap中有两个参数影响性能:“初始容量”和“加载因子”。容量是HashMap中桶的数量。初始容量是哈希表在创建时的容量,加载因子是哈希表子在容量自动增长之前可以达到多满的一种尺度。当哈希表中的实际数量大于加载容量*当前容量时,需要对HashMap进行resize()。
HashMap源码分析
HashMap源码(JDK6)
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
{
//默认的初始容量
static final int DEFAULT_INITIAL_CAPACITY = 16;
//最大容量,如果传入容量多大,将被这个值替换
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//存储数据的Entry数组,长度是2的n次幂。
transient Entry[] table;
//HashMap的大小,他是HashMap保存的键值对的数量
transient int size;
//阀值,用于判断是否需要调整HashMap的容量,阀值=(容量*加载因子)
int threshold;
//加载因子的实际大小
final float loadFactor;
//HashMap的改变次数
transient volatile int modCount;
//指定容量大小和加载因子的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//找出大于initialCapacity的最小的2的幂
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
//设置阀值
threshold = (int)(capacity * loadFactor);
//创建Entry数组,保存数据
table = new Entry[capacity];
init();
}
//指定容量的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//默认构造函数
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
//含有子Map的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
//计算hash值(扰动函数)
static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
//返回数组下标,根据hash值和HashMap的长度,计算出下标值
static int indexFor(int h, int length) {
return h & (length-1);
}
//返回HashMap的大小
public int size() {
return size;
}
//判断hashMap是否为空
public boolean isEmpty() {
return size == 0;
}
//获取key对应的vaule
public V get(Object key) {
if (key == null)
return getForNullKey();
//获取key的hash值
int hash = hash(key.hashCode());
//在该hash值对应的链表上查找键值等于key的元素
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
//获取key为null的元素的值(HashMap将key为Null的元素存储在table[0]上)
private V getForNullKey() {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
//hashMap是否包含Key
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
//返回键为key的键值对
final Entry<K,V> getEntry(Object key) {
//计算hash值,HashMap将key为Null的元素存储在table[0]的位置,key不为null的需要计算hash值
int hash = (key == null) ? 0 : hash(key.hashCode());
//在hash值对应的链表上查找键值=key的元素,先判断hash值是否相等,在判断key是否相等,是因为通过hash判断的效率高
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
//将key-value添加到HashMap中
public V put(K key, V value) {
//如果key为Null,将键值对添加到table[0]的位置
if (key == null)
return putForNullKey(value);
//key不为空,计算hash值,根据hash值获取位置索引
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
//遍历链表,判断key对应的值是否存在,存在用新值替代
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//键值对不存在,将key-value添加到table中
addEntry(hash, key, value, i);
return null;
}
//将key为null的添加到table[0]的位置
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
//创建hashMap对应的添加方法,用于内部调用,被构造函数调用创建HashMap,put()用于对外提供添加元素
private void putForCreate(K key, V value) {
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
e.value = value;
return;
}
}
createEntry(hash, key, value, i);
}
//将m中的元素全都添加到HashMap中
private void putAllForCreate(Map<? extends K, ? extends V> m) {
//利用迭代器将元素逐个添加到hashMap中
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
putForCreate(e.getKey(), e.getValue());
}
}
//重新调整HashMap的大小,newCapacity是调整之后的大小
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
//将HashMap中的全部元素都添加到newTable中
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry<K,V> e = src[j];
if (e != null) {
src[j] = null;
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
//将m中的元素全部添加到HashMap中
public void putAll(Map<? extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
//通过迭代将m中的元素添加到HashMap中
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
put(e.getKey(), e.getValue());
}
}
//删除键为key的元素
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
//删除键为key的元素
final Entry<K,V> removeEntryForKey(Object key) {
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
//删除键值对
final Entry<K,V> removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return null;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
Object key = entry.getKey();
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
if (e.hash == hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
//清空HashMap
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}
//判断是否包含某值
public boolean containsValue(Object value) {
if (value == null)
return containsNullValue();
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
//判断是否包含null值
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
//克隆函数,并返回Object对象
public Object clone() {
HashMap<K,V> result = null;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
result.table = new Entry[table.length];
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
result.putAllForCreate(this);
return result;
}
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
final int hash;
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
void recordAccess(HashMap<K,V> m) {
}
void recordRemoval(HashMap<K,V> m) {
}
}
//将key-value添加到指定位置,一般用于新增entry可能会导致hashMap的实际容量超过阀值的情况
void addEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
//如果实际大小>阀值,调整HashMap的大小
if (size++ >= threshold)
resize(2 * table.length);
}
//创建entry,一般用于新增Entry不会导致hashMap的实际容量超过阀值的情况
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
size++;
}
//HashIterator迭代器是HashMpa抽象出来的父类,实现了公共函数
private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next; // next entry to return
int expectedModCount; // For fast-fail
int index; // current slot
Entry<K,V> current; // current entry
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
}
public final boolean hasNext() {
return next != null;
}
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
private final class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
private final class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
Iterator<K> newKeyIterator() {
return new KeyIterator();
}
Iterator<V> newValueIterator() {
return new ValueIterator();
}
Iterator<Map.Entry<K,V>> newEntryIterator() {
return new EntryIterator();
}
private transient Set<Map.Entry<K,V>> entrySet = null;
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
private final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}
private final class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return newValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
HashMap.this.clear();
}
}
public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
}
private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}
private void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
Iterator<Map.Entry<K,V>> i =
(size > 0) ? entrySet0().iterator() : null;
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
// Write out number of buckets
s.writeInt(table.length);
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
if (i != null) {
while (i.hasNext()) {
Map.Entry<K,V> e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
}
private static final long serialVersionUID = 362498820763181265L;
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the threshold, loadfactor, and any hidden stuff
s.defaultReadObject();
// Read in number of buckets and allocate the bucket array;
int numBuckets = s.readInt();
table = new Entry[numBuckets];
init(); // Give subclass a chance to do its thing.
// Read in size (number of Mappings)
int size = s.readInt();
// Read the keys and values, and put the mappings in the HashMap
for (int i=0; i<size; i++) {
K key = (K) s.readObject();
V value = (V) s.readObject();
putForCreate(key, value);
}
}
// These methods are used when serializing HashSets
int capacity() { return table.length; }
float loadFactor() { return loadFactor; }
}
问题:
(1)为什么HashMap的容量一定要是2的n次幂? 因为我们在计算hash值的时候一般采用除留余数法计算,例如15%4=3;我们计算机在计算的时候使用&运算符更高效的实现除留余数法,也就是h%length=h&(length-1),当数组长度是2的n次幂时保证了length-1的最后一位为1,从而保证了取索引操作的h&(length-1)的最后一位同时为0和1的可能性,保证了散列的均匀性。当length为奇数时,length-1的最后一位为0,这样&操作的最后一位一定是0,那么索引位置就一定是偶数,导致数组的奇数位置全部没有放置元素,浪费空间。
HashMap源码(JDK8)
这里并没有将全部源码都分析,原因是JDK8中添加好多新的方法,这些方面没有使用过,所以也没过于关心,同时这里只罗列出了一下比较重要的方法。
类的属性
//初始容量16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//当桶(bucket)上的节点数大于这个值是会转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//当桶(bucket)上的节点数小于这个值会转换为链表
static final int UNTREEIFY_THRESHOLD = 6;
//桶中结构转换为红黑树对应的table最小大小
static final int MIN_TREEIFY_CAPACITY = 64;
//存储元素的数组,一定是2的n次幂
transient Node<K,V>[] table;
//存放具体的元素的集合
transient Set<Map.Entry<K,V>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度
transient int size;
//改变计数
transient int modCount;
//临界值,当实际大小(容量*加载因子)超过临界值,进行扩容
int threshold;
//加载因子
final float loadFactor;
构造函数
//指定容量值和加载因子的构造函数,容量值<0抛出异常;容量值大于1 << 30,设置容量值为该值
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//加载因子小于0抛出异常
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
//指定容量值,使用默认加载因子构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//默认构造函数,没有指定容量值则为Null
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//将集合中的元素添加到hashMap中
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
针对构造函数中调用tableSizeFor,如下:
//返回大于cap的最小二次幂值
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
分析一下这个算法:
首先是cap-1,这是为了防止,cap已经是2的幂。如果cap已经是2的幂, 又没有执行这个减1操作,则执行完后面的几条无符号右移操作之后,返回的capacity将是这个cap的2倍
第一次右移: n |= n >>> 1;因为n不等于0,那么在二进制中总会有一个bit是1,这时考虑最高位的1,通过无符号右移一位,那么最高位的1右移1位,再做或操作,使得n中的二进制中的与最高位的1紧邻的右边一位也是1.
第二次右移n |= n >>> 2;同理最高位的1右移了2位,然后与原值或,这样二进制中的最高位中会有4个连续的1。
第三次右移:n |= n >>> 4;同理最高位的1右移了4为,然后与原值或,这样二进制中的最高位会有8个连续的1.
以此类推。。。。
经过上面的我们看到,容量最大就是32位都为1,已经大于了我们的最大值,所以取最大值。经过上面的推算,我们可以看到,给定一个数,经过上面的右移操作,最终会对这个数据没有什么操作
针对于构造函数中调用putMapEntries()说明:
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
//判断table是否已经初始化,没有初始化,s就是实际元素
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
// 计算得到的t大于阈值,则初始化阈值
if (t > threshold)
threshold = tableSizeFor(t);
}
// 已初始化,并且m元素个数大于阈值,进行扩容处理
else if (s > threshold)
resize();
// 将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
重要函数
(1)putVal函数,同时hashmap中有一个put函数,也是调用了putVal
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//table是否为空,为空或者长度=0,进行扩容;table不为空,根据计算出来的hash插入对应的数组索引
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//根据计算出的hash确定元素放到哪个桶中,桶为空,新生成节点放入桶中
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//桶中已经存在元素
Node<K,V> e; K k;
//比较桶中的元素的key是否存在,存在直接覆盖value
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//不存在,先判断是不是红黑树节点,是红黑树直接放到树中,不是红黑树,放到链表中
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//在链表最末端插入节点
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//判断结束数量是否达到8,转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 判断链表中结点的key值与插入的元素的key值是否相等,
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 表示在桶中找到key值、hash值与插入元素相等的结点,覆盖旧值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
让我们梳理一下putVal()的逻辑:
(2)resize()函数
final Node<K,V>[] resize() {
//保存当前table
Node<K,V>[] oldTab = table;
//table大小
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//保存当前阀值
int oldThr = threshold;
int newCap, newThr = 0;
//之前table大于0
if (oldCap > 0) {
//之前table大于最大值,阀值为最大整形,并返回
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//之前table没有达到最大值,容量翻倍,左移效率高
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//之前阀值大于0,新容量=原阀值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else {
//新容量为默认16,新阀值为16*0.75
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//新的阀值==0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//之前table已经初始化过
if (oldTab != null) {
//遍历原table
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;//e指向oldTab数组中的元素,即每个链表中的头结点
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)//链表中只有一个头结点
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)//判断是否是红黑树节点,是的话,调用split调整
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
//是链表,对链表进行秩序维护,因为我们使用了2倍扩容,所以桶中的元素必须是要么待在原来索引的对应位置,要么在新的桶中的位置便宜2倍
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
梳理一下,做了什么优化:
我们在扩容的时候使用的是2的次幂的扩展,所以元素的位置要么在原位置要么在原位置再一定2次幂的位置,如图,原容量为16,那么n-1 = 0000 1111,扩大2次幂就是 0001 1111.图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果.
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化。
因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:
(3)getNode函数,HashMap中的get调用给用户的,就是通过调用getNode函数
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//先判断是否是红黑树,如果是红黑树,直接从红黑树中拿取,如果不是从链表中获取数据
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
(4)removeNode()函数
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//table数组非空,键的hash值所指向的数组中的元素非空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;//node指向最终的结果结点,e为链表中的遍历指针
if (p.hash == hash && //检查第一个节点,如果匹配成功
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
//如果第一个节点匹配不成功,则向后遍历链表查找
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
HashMap遍历
1.entrySet获取键值对,再通过Iterator遍历
Iterator iterator = hashMap.entrySet().iterator();
while (iterator.hasNext()){
Map.Entry entity = ( Map.Entry) iterator.next();
System.out.println("key="+entity.getKey()+",value="+entity.getValue());
}
2.通过keySet获取键的set集合,再通过Iterator遍历键集合
Iterator iterator1 = hashMap.keySet().iterator();
while (iterator1.hasNext()){
String key = iterator1.next().toString();
System.out.println("key="+key+",value="+hashMap.get(key));
}
HashMap问题:
(1)说明一下tableSizeFor是如何保证拿到大于等于容量的最小的2的次幂的? 首先我们将cap-1,然后得到的值在右移一位,这样就保证最高位的1右移1位,同时跟原来的值或操作,那么就保证最高位旁边有两个连续的1。同理右移2位,就有4个1,右移4为8个一,这样最大的值就是2的32次幂。如果我们传入任意一个数,在操作的过程中,会右移然后或操作,导致数不变,那么此时就会得到大于等于容量的最小的2次幂
(2)描述一下java8中HashMap是如何进行put?
我们在put值的时候,会调用putVal函数,先判断table是否为空(table的长度是否为0),如果为空,先进行扩容;如果不为空根据键Key计算hash值,得到数组索引。判断table[i]是否为空。为空直接插入;不为空先判断key是否存在,存在直接覆盖;不存在先判断该节点是不是红黑树,是红黑树直接插入键值对;不是红黑树开始遍历链表插入数据,判断链表长度是否大于8,是的话转换为红黑树,不是的链表插入,若Key存在覆盖。最后判断容量值是否需要扩容。 (3)描述一下java8中的resize()的实现方式?巧妙之处在于哪里?
jdk7中在扩容的时候使用的是hash值与数组长度-1这个掩码进行与运算,得到新的Entry元素的新下标位置.
jdk8中扩容的时候使用的hash值与数组长度进行与运算,因为数组长度是2次幂的长度,所以得到的是0或者非0,0表示新位置不变,是1索引变成“原索引+原容量”