POJ 2049Tautology(模拟)

本文介绍了一种通过栈实现的算法来判断给定的逻辑公式是否为永真式的解决方案。该算法利用逆波兰表示法的思想,对输入的逻辑公式进行求值,并最终确定其是否不论变量如何取值均为真。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tautology

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 12454 Accepted: 4738

Description

WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:

  • p, q, r, s, and t are WFFs
  • if w is a WFF, Nw is a WFF
  • if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
The meaning of a WFF is defined as follows:
  • p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
  • K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
Definitions of K, A, N, C, and E
     w  x  Kwx  Awx   Nw  Cwx  Ewx
  1  1  1  1   0  1  1
  1  0  0  1   0  0  0
  0  1  0  1   1  1  0
  0  0  0  0   1  1  1

A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example,ApNp is a tautology because it is true regardless of the value of p. On the other hand,ApNq is not, because it has the value 0 for p=0, q=1.

You must determine whether or not a WFF is a tautology.

Input

Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.

Output

For each test case, output a line containing tautology or not as appropriate.

Sample Input

ApNp
ApNq
0

Sample Output

tautology
not

Source

题意:有p,q,r,s,t五个变量,分别取1或0;有五个关系表达式’K‘(与关系)、’A‘(或关系)、’N‘(非关系)、’C‘(没有定义,只有0,1时为0)、’E‘(同或关系);输入一行不超过100个字符的字符串,如果五个变量无论什么取值都结果为1输出tautology,否则输出not。

题解:用栈从后往前做运算,当找到一个0时就标记flag=0;结束循环。


#include <iostream>
#include <stdio.h>
#include <stack>
#include <map>
#include <string.h>

using namespace std;

map<char, int>mp;

char str[150];

int judge()
{
    stack<int>p;
    int L = strlen(str);
    for(int i = L-1; i >= 0; i--)
    {
        if(str[i] == 'K'||str[i] == 'A'||str[i] == 'C'||str[i] == 'E')
        {
            int num2 = p.top();
            p.pop();
            int num1 = p.top();
            p.pop();
            if(str[i] == 'K')
            {
                p.push(num1&&num2);
            }
            else if(str[i] == 'A')
            {
                p.push(num1||num2);
            }
            else if(str[i] == 'C')
            {
                if(num1 == 1&&num2 == 0)
                    p.push(0);
                else
                    p.push(1);
            }
            else if(str[i] == 'E')
            {
                if((num1 == 0&&num2==0)||(num1==1&&num2==1))
                {
                    p.push(1);
                }
                else
                    p.push(0);
            }
        }
        else if(str[i] == 'N')
        {
            int num = p.top();
            p.pop();
            p.push(!num);
        }
        else
        {
            p.push(mp[str[i]]);
        }
    }
    int num = p.top();
    while(!p.empty())
        p.pop();
    return num;
}

int main()
{
    int p, q, r, s, t;
    while(~scanf("%s", str) && str[0]!='0')
    {
        int flag = 1;
        for(p = 0; p < 2; p++)
        {
            if(flag == 0)
                break;
            mp['p'] = p;
            for(q = 0; q < 2&&flag; q++)
            {
                if(flag == 0)
                    break;
                mp['q'] = q;
                for(r = 0; r < 2&&flag; r++)
                {
                    if(flag == 0)
                        break;
                    mp['r'] = r;
                    for(s = 0; s < 2&&flag; s++)
                    {
                        if(flag == 0)
                            break;
                        mp['s'] = s;
                        for(t = 0; t < 2&&flag; t++)
                        {
                            if(flag == 0)
                                break;
                            mp['t'] = t;
                            if(judge() == 0)
                                flag = 0;
                        }
                    }
                }
            }
        }
        if(flag == 0)
            printf("not\n");
        else
            printf("tautology\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值