【线性神经网络】(二)softmax回归

本文介绍了softmax回归,一种基于线性模型的分类方法,通过softmax函数将输入映射到概率分布。讨论了其激活函数、损失函数(尤其是交叉熵),以及交叉熵在衡量预测与实际标签差异的应用。文章还提及了模型预测和评估指标,如精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.网络结构

为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。
为了解决线性模型的分类问题,我们需要和输出一样多的仿射函数(affine function)。每个输出对应于它自己的仿射函数。在我们的例子中,由于我们有4个特征和3个可能的输出类别,我们将需要12个标量来表示权重(带下标的 w w w),3个标量来表示偏置(带下标的 b b b)。

下面我们为每个输入计算三个未规范化的预测(logit): o 1 o_1 o1 o 2 o_2 o2 o 3 o_3 o3
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 , o 2 = x 1 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 , o 3 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 . \begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + x_4 w_{14} + b_1,\\ o_2 &= x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + x_4 w_{24} + b_2,\\ o_3 &= x_1 w_{31} + x_2 w_{32} + x_3 w_{33} + x_4 w_{34} + b_3. \end{aligned} o1o2o3=x1w11+x2w12+x3w13+x4w14+b1,=x1w21+x2w22+x3w23+x4w24+b2,=x1w31+x2w32+x3w33+x4w34+b3.
神经网络图如下所示:
在这里插入图片描述

与线性回归一样,softmax回归也是一个单层神经网络。由于计算每个输出 o 1 o_1 o1 o 2 o_2 o2 o 3 o_3 o3取决于所有输入 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4,所以softmax回归的输出层也是全连接层。

2. 激活函数: softmax 函数

softmax 函数 公式形式如下:
y ^ = s o f t m a x ( o ) 其中 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat{\mathbf{y}} = \mathrm{softmax}(\mathbf{o})\quad \text{其中}\quad \hat{y}_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)} y^=softmax(o)其中y^j=kexp(ok)exp(oj)

这里,对于所有的 j j j总有 0 ≤ y ^ j ≤ 1 0 \leq \hat{y}_j \leq 1 0y^j1。因此, y ^ \hat{\mathbf{y}} y^可以视为一个正确的概率分布。softmax运算不会改变未规范化的预测 o \mathbf{o} o之间的大小次序,只会确定分配给每个类别的概率。因此,在预测过程中,我们仍然可以用下式来选择最有可能的类别。

argmax ⁡ j y ^ j = argmax ⁡ j o j . \operatorname*{argmax}_j \hat y_j = \operatorname*{argmax}_j o_j. jargmaxy^j=jargmaxoj.

尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。因此,softmax回归是一个线性模型(linear model)。

3.损失函数

对数似然

设向量 y ^ \hat{\mathbf{y}} y^,为“对给定任意输入 x \mathbf{x} x的每个类的条件概率”组成的一维向量。

假设整个数据集 { X , Y } \{\mathbf{X}, \mathbf{Y}\} {X,Y}具有 n n n个样本,
其中索引 i i i的样本由特征向量 x ( i ) \mathbf{x}^{(i)} x(i)和独热标签向量 y ( i ) \mathbf{y}^{(i)} y(i)组成。
我们可以将估计值与实际值进行比较:

P ( Y ∣ X ) = ∏ i = 1 n P ( y ( i ) ∣ x ( i ) ) . P(\mathbf{Y} \mid \mathbf{X}) = \prod_{i=1}^n P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}). P(YX)=i=1nP(y(i)x(i)).

根据最大似然估计,我们最大化 P ( Y ∣ X ) P(\mathbf{Y} \mid \mathbf{X}) P(YX),相当于最小化负对数似然:

− log ⁡ P ( Y ∣ X ) = ∑ i = 1 n − log ⁡ P ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 n l ( y ( i ) , y ^ ( i ) ) , -\log P(\mathbf{Y} \mid \mathbf{X}) = \sum_{i=1}^n -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) = \sum_{i=1}^n l(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}), logP(YX)=i=1nlogP(y(i)x(i))=i=1nl(y(i),y^(i)),

其中,对于任何标签 y \mathbf{y} y和模型预测 y ^ \hat{\mathbf{y}} y^,损失函数为:

l ( y , y ^ ) = − ∑ j = 1 q y j log ⁡ y ^ j . l(\mathbf{y}, \hat{\mathbf{y}}) = - \sum_{j=1}^q y_j \log \hat{y}_j. l(y,y^)=j=1qyjlogy^j.
:eqlabel:eq_l_cross_entropy

在本节稍后的内容会讲到, :eqref:eq_l_cross_entropy中的损失函数
通常被称为交叉熵损失(cross-entropy loss)。
由于 y \mathbf{y} y是一个长度为 q q q的独热编码向量,
所以除了一个项以外的所有项 j j j都消失了。
由于所有 y ^ j \hat{y}_j y^j都是预测的概率,所以它们的对数永远不会大于 0 0 0
因此,如果正确地预测实际标签,即如果实际标签 P ( y ∣ x ) = 1 P(\mathbf{y} \mid \mathbf{x})=1 P(yx)=1
则损失函数不能进一步最小化。
注意,这往往是不可能的。
例如,数据集中可能存在标签噪声(比如某些样本可能被误标),
或输入特征没有足够的信息来完美地对每一个样本分类。

交叉熵损失

现在让我们考虑整个结果分布的情况,即观察到的不仅仅是一个结果。
对于标签 y \mathbf{y} y,我们可以使用与以前相同的表示形式。
唯一的区别是,我们现在用一个概率向量表示,如 ( 0.1 , 0.2 , 0.7 ) (0.1, 0.2, 0.7) (0.1,0.2,0.7)
而不是仅包含二元项的向量 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1)
我们使用 :eqref:eq_l_cross_entropy来定义损失 l l l
它是所有标签分布的预期损失值。
此损失称为交叉熵损失(cross-entropy loss),它是分类问题最常用的损失之一。
本节我们将通过介绍信息论基础来理解交叉熵损失。
如果想了解更多信息论的细节,请进一步参考
本书附录中关于信息论的一节

信息论基础

🏷subsec_info_theory_basics

信息论(information theory)涉及编码、解码、发送以及尽可能简洁地处理信息或数据。

信息论的核心思想是量化数据中的信息内容。
在信息论中,该数值被称为分布 P P P(entropy)。可以通过以下方程得到:

H [ P ] = ∑ j − P ( j ) log ⁡ P ( j ) . H[P] = \sum_j - P(j) \log P(j). H[P]=jP(j)logP(j).
:eqlabel:eq_softmax_reg_entropy

信息论的基本定理之一指出,为了对从分布 p p p中随机抽取的数据进行编码,
我们至少需要 H [ P ] H[P] H[P]“纳特(nat)”对其进行编码。
“纳特”相当于比特(bit),但是对数底为 e e e而不是2。因此,一个纳特是 1 log ⁡ ( 2 ) ≈ 1.44 \frac{1}{\log(2)} \approx 1.44 log(2)11.44比特。

信息量

压缩与预测有什么关系呢?
想象一下,我们有一个要压缩的数据流。
如果我们很容易预测下一个数据,那么这个数据就很容易压缩。
为什么呢?
举一个极端的例子,假如数据流中的每个数据完全相同,这会是一个非常无聊的数据流。
由于它们总是相同的,我们总是知道下一个数据是什么。
所以,为了传递数据流的内容,我们不必传输任何信息。也就是说,“下一个数据是xx”这个事件毫无信息量。

但是,如果我们不能完全预测每一个事件,那么我们有时可能会感到"惊异"。
克劳德·香农决定用信息量 log ⁡ 1 P ( j ) = − log ⁡ P ( j ) \log \frac{1}{P(j)} = -\log P(j) logP(j)1=logP(j)来量化这种惊异程度。
在观察一个事件 j j j时,并赋予它(主观)概率 P ( j ) P(j) P(j)
当我们赋予一个事件较低的概率时,我们的惊异会更大,该事件的信息量也就更大。
在 :eqref:eq_softmax_reg_entropy中定义的熵,
是当分配的概率真正匹配数据生成过程时的信息量的期望

重新审视交叉熵

如果把熵 H ( P ) H(P) H(P)想象为“知道真实概率的人所经历的惊异程度”,那么什么是交叉熵?
交叉熵 P P P Q Q Q,记为 H ( P , Q ) H(P, Q) H(P,Q)
我们可以把交叉熵想象为“主观概率为 Q Q Q的观察者在看到根据概率 P P P生成的数据时的预期惊异”。
P = Q P=Q P=Q时,交叉熵达到最低。
在这种情况下,从 P P P Q Q Q的交叉熵是 H ( P , P ) = H ( P ) H(P, P)= H(P) H(P,P)=H(P)

简而言之,我们可以从两方面来考虑交叉熵分类目标:
(i)最大化观测数据的似然;(ii)最小化传达标签所需的惊异。

模型预测和评估

在训练softmax回归模型后,给出任何样本特征,我们可以预测每个输出类别的概率。
通常我们使用预测概率最高的类别作为输出类别。
如果预测与实际类别(标签)一致,则预测是正确的。
在接下来的实验中,我们将使用精度(accuracy)来评估模型的性能。
精度等于正确预测数与预测总数之间的比率。

小结

  • softmax运算获取一个向量并将其映射为概率。
  • softmax回归适用于分类问题,它使用了softmax运算中输出类别的概率分布。
  • 交叉熵是一个衡量两个概率分布之间差异的很好的度量,它测量给定模型编码数据所需的比特数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值