图文详解YVU格式

YUV格式有两大类:planar和packed。
对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。
对于packed的YUV格式,每个像素点的Y,U,V是连续交*存储的。 


YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。


    与我们熟知的RGB类似,YUV也是一种颜色编码方法,主要用于电视系统以及模拟视频领域,它将亮度信息(Y)与色彩信息(UV)分离,没有UV信息一样可以显示完整的图像,只不过是黑白的,这样的设计很好地解决了彩色电视机与黑白电视的兼容问题。并且,YUV不像RGB那样要求三个独立的视频信号同时传输,所以用YUV方式传送占用极少的频宽。


1.  采样方式

YUV码流的存储格式其实与其采样的方式密切相关,主流的采样方式有三种,YUV4:4:4,YUV4:2:2,YUV4:2:0,关于其详细原理,可以通过网上其它文章了解,这里我想强调的是如何根据其采样格式来从码流中还原每个像素点的YUV值,因为只有正确地还原了每个像素点的YUV值,才能通过YUV与RGB的转换公式提取出每个像素点的RGB值,然后显示出来。


    用三个图来直观地表示采集的方式吧,以黑点表示采样该像素点的Y分量,以空心圆圈表示采用该像素点的UV分量。


先记住下面这段话,以后提取每个像素的YUV分量会用到。

  1. YUV 4:4:4采样,每一个Y对应一组UV分量。
  2. YUV 4:2:2采样,每两个Y共用一组UV分量。 
  3. YUV 4:2:0采样,每四个Y共用一组UV分量。 
⑴ YUV 4:4:4
YUV三个信道的抽样率相同,因此在生成的图像里,每个象素的三个分量信息完整(每个分量通常8比特),经过8比特量化之后,未经压缩的每个像素占用3个字节。
下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
存放的码流为: Y0 U0 V0 Y1 U1 V1 Y2 U2 V2 Y3 U3 V3


⑵ YUV 4:2:2
每个色差信道的抽样率是亮度信道的一半,所以水平方向的色度抽样率只是4:4:4的一半。对非压缩的8比特量化的图像来说,每个由两个水平方向相邻的像素组成的宏像素需要占用4字节内存。
下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
存放的码流为: Y0 U0 Y1 V1 Y2 U2 Y3 V3
映射出像素点为:[Y0 U0 V1] [Y1 U0 V1] [Y2 U2 V3] [Y3 U2 V3]


⑶ YUV 4:1:1
4:1:1的色度抽样,是在水平方向上对色度进行4:1抽样。对于低端用户和消费类产品这仍然是可以接受的。对非压缩的8比特量化的视频来说,每个由4个水平方向相邻的像素组成的宏像素需要占用6字节内存
下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
存放的码流为: Y0 U0 Y1 Y2 V2 Y3
映射出像素点为:[Y0 U0 V2] [Y1 U0 V2] [Y2 U0 V2] [Y3 U0 V2]


⑷YUV4:2:0
4:2:0并不意味着只有Y,Cb而没有Cr分量。它指得是对每行扫描线来说,只有一种色度分量以2:1的抽样率存储。相邻的扫描行存储不同的色度分量,也就是说,如果一行是4:2:0的话,下一行就是4:0:2,再下一行是4:2:0...以此类推。对每个色度分量来说,水平方向和竖直方向的抽样率都是2:1,所以可以说色度的抽样率是4:1。对非压缩的8比特量化的视频来说,每个由2x2个2行2列相邻的像素组成的宏像素需要占用6字节内存。
下面八个像素为:[Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3][Y5 U5 V5] [Y6 U6 V6] [Y7U7 V7] [Y8 U8 V8]
存放的码流为:Y0 U0 Y1 Y2 U2 Y3 Y5 V5 Y6 Y7 V7 Y8
映射出的像素点为:[Y0 U0 V5] [Y1 U0 V5] [Y2 U2 V7] [Y3 U2 V7][Y5 U0 V5] [Y6 U0 V5] [Y7U2 V7] [Y8 U2 V7]

2.  存储方式

下面我用图的形式给出常见的YUV码流的存储方式,并在存储方式后面附有取样每个像素点的YUV数据的方法,其中,Cb、Cr的含义等同于U、V。


(1) YUYV 格式 (属于YUV422)



YUYV为YUV422采样的存储格式中的一种,相邻的两个Y共用其相邻的两个Cb、Cr,分析,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00,其他的像素点的YUV取值依次类推。


(2) UYVY 格式 (属于YUV422)



UYVY格式也是YUV422采样的存储格式中的一种,只不过与YUYV不同的是UV的排列顺序不一样而已,还原其每个像素点的YUV值的方法与上面一样。


(3) YUV422P(属于YUV422)




YUV422P也属于YUV422的一种,它是一种Plane模式,即打包模式,并不是将YUV数据交错存储,而是先存放所有的Y分量,然后存储所有的U(Cb)分量,最后存储所有的V(Cr)分量,如上图所示。其每一个像素点的YUV值提取方法也是遵循YUV422格式的最基本提取方法,即两个Y共用一个UV。比如,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00。


(4)YV12,YU12格式(属于YUV420)




YU12和YV12属于YUV420格式,也是一种Plane模式,将Y、U、V分量分别打包,依次存储。其每一个像素点的YUV数据提取遵循YUV420格式的提取方式,即4个Y分量共用一组UV。注意,上图中,Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00,其他依次类推。


(5)NV12、NV21(属于YUV420)



NV12和NV21属于YUV420格式,是一种two-plane模式,即Y和UV分为两个Plane,但是UV(CbCr)为交错存储,而不是分为三个plane。其提取方式与上一种类似,即Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00


3. YCbCr与RGB的相互转换
Y=0.299R+0.587G+0.114B
Cb=0.564(B-Y)
Cr=0.713(R-Y)
R=Y+1.402Cr
G=Y-0.344Cb-0.714Cr
B=Y+1.772Cb


本文参考自:http://ticktick.blog.51cto.com/823160/555791

http://www.cnblogs.com/azraelly/archive/2013/01/01/2841269.html

http://baike.baidu.com/link?url=groHVkJlZlC_O1ZxeKAuxum-yPGfPiccat655FKVBj23p16sEpvpjwE2gKwC2cfM

要将海思的YVU数据格式转换为YUV数据格式,你可以使用以下代码片段: ```cpp // 定义YVU数据格式的宽度和高度 int width = 640; // 图像宽度 int height = 480; // 图像高度 // 定义YVU数据格式中Y、V、U分量的起始地址 HI_U8* yData = buffer; // Y分量起始地址 HI_U8* vData = yData + width * height; // V分量起始地址 HI_U8* uData = vData + width * height / 4; // U分量起始地址 // 创建一个与输入图像大小相同的输出图像 cv::Mat yuvImage(height, width, CV_8UC3); // 将YVU数据格式转换为YUV数据格式 for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int index = y * width + x; int uvIndex = y / 2 * width / 2 + x / 2; // 获取Y、U、V分量的值 unsigned char Y = yData[index]; unsigned char U = uData[uvIndex]; unsigned char V = vData[uvIndex]; // 计算YUV分量的位置 int yuvIndex = y * width * 3 + x * 3; // 将YUV分量存储到输出图像中 yuvImage.data[yuvIndex] = Y; yuvImage.data[yuvIndex + 1] = U; yuvImage.data[yuvIndex + 2] = V; } } ``` 在上述代码中,我们假设YVU数据格式YVU420P,在内存中依次存储Y、V、U分量。我们首先根据图像的宽度和高度计算出Y、V、U分量的起始地址。然后,我们创建一个与输入图像大小相同的输出图像。接下来,我们使用双层循环遍历每个像素,从Y、V、U分量中获取对应的值,并将它们存储到输出图像的相应位置。 请注意,上述代码仅适用于YVU420P格式的图像,如果你的图像格式不同,需要根据实际情况进行调整。同时,上述代码中的图像处理是逐像素进行的,可能效率较低。如果需要更高效的处理方法,可以考虑使用OpenCV等库提供的相关函数或者使用并行计算技术进行加速。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值