/*************************************************************
* file: binary_tree_traverse.c
* brief:二叉树遍历的相关算法
* yejing@2015.2.11 1.0 creat
* yejing@2015.2.14 1.1 added二叉树层次遍历
* yejing@2015.2.15 1.2 added已知前序中序重建二叉树
* yejing@2015.2.16 1.3 added已知二叉树前序中序求后序
*************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
typedef _node_t{
struct _node_t* left;
struct _node_t* right;
int value;
}node_t;
/**********************二叉树的递归遍历**********************/
static void recursive_preorder(node_t* root){
if(!root)
return;
printf("%d ", root->value);
if(root->left)
recursive_preorder(root->left);
if(root->right)
recursive_preorder(root->right);
return;
}
static void recursive_inorder(node_t* root){
if(!root)
return;
if(root->left)
recursive_preorder(root->left);
printf("%d ", root->value);
if(root->right)
recursive_preorder(root->right);
}
static void recursive_postorder(node_t* root){
if(!root)
return;
if(root->left)
recursive_preorder(root->left);
if(root->right)
recursive_preorder(root->right);
printf("%d ", root->value);
return;
}
/*********************二叉树的非递归遍历*********************/
#define MAX_SIZE 1024
typdef struct _assist_stack_t{
node_t* array[MAX_SIZE];
int count;
}assist_stack_t;
static void stack_push(assist_stack_t ast_stck, node_t node){
if(ast_stck.count >= MAX_SIZE)
return;
ast_stck.array[ast_stck.count++] = node;
return;
}
static node_t stack_pop(assist_stack_t ast_stck){
if(ast_stck.count <= 0)
return NULL;
return ast_stck.array[--ast_stck.count];
}
static int stack_getsize(assist_stack_t ast_stck){
return ast_stck.count;
}
static void loop_preorder(node_t* root){
if(!root)
return;
node_t* tmp = root;
assist_stack_t ast_stck;
memset((char*)&ast_stck, 0, sizeof(ast_stck));
ast_stck.count = 0;
stack_push(ast_stck, tmp);
printf("\033[1;31;40m %s[start]\033[0m \n", __func__);
while(!tmp || stack_getsize(ast_stck)){
while(!tmp){
push(ast_stck, tmp);
printf("%d ", tmp->value);
tmp = tmp->lchild;
}
if(stack_getsize(ast_stck))
tmp = stack_pop(ast_stck)
if(tmp)
tmp = tmp->rchild;
}
printf("\033[1;31;40m %s[end]\033[0m \n", __func__);
return;
}
static void loop_inorder(node_t* root){
if(!root)
return;
node_t* tmp = root;
assist_stack_t ast_stck;
memset((char*)&ast_stck, 0, sizeof(ast_stck));
ast_stck.count = 0;
stack_push(ast_stck, tmp);
printf("\033[1;31;40m %s[start]\033[0m \n", __func__);
while(!tmp || stack_getsize(ast_stck)){
while(!tmp){
push(ast_stck, tmp);
tmp = tmp->lchild;
}
if(stack_getsize(ast_stck))
tmp = stack_pop(ast_stck)
printf("%d ", tmp->value);
if(tmp)
tmp = tmp->rchild;
}
printf("\033[1;31;40m %s[end]\033[0m \n", __func__);
return;
}
static void loop_postorder(node_t* root){
}
/***************二叉树的层次遍历(借助辅助队列)****************/
typedef struct _list_t{
node_t* node;
struct _list_t* next;
}list_t;
typedef _queue_t{
list_t* head;
list_t* tail;
}queue_t;
static void enqueue(queue_t* queue, node_t* node){
if(!node || !queue)
return;
list_t* tmp = queue->head;
}
static list_t* dequeue(queue_t* queue){
}
static int is_queue_empty(queue_t* queue){
}
static void binary_tree_level_traverse(node_t* root){
if(!root)
return;
queue_t queue;
queue->head = queue->tail = NULL;
list_t* tmp = (list*)malloc(sizeof(list_t));
enqueue(queue, tmp);
while(!is_queue_empty(queue)){
tmp = dequeue(queue);
printf("%d ", tmp->value);
if(!tmp){
if(!tmp->lchild)
enqueue(queue, tmp->lchild);
if(!tmp->rchild)
enqueue(queue, tmp->rchild);
}
}
printf("\n");
return;
}
/*******************已知前序中序重建二叉树********************/
/*
brief:通过前序中序递归重建二叉树,通过后序中序求前序类似,只不过后序的根节点在最后。
params:
preOrder 前序遍历向量
inOrder 中序遍历向量
treeLen 树节点总数
return:
重建树的跟节点
*/
static void binary_tree_rebuild(int* preOrder, int* inOrder, int treeLen, node_t** root){
if(!preOrder || !inOrder || treeLen < 1 || !*root)
return;
node_t* tmp = (node_t*)malloc(sizeof(node_t));
if(!tmp)
return;
memset((char*)tmp, 0, sizeof(node_t));
//前序遍历第一个元素是根
tmp->value = *preOrder;
*root = tmp;
//递归退出条件,到最后一个节点
if(treelen == 1)
return;
//定位中序中的根,在根之前的为左子,之后的为右子
int* cursor = inOrder;
int cursor_len = 0;
while(*cursor != *preOrder){
if(!cursor)
return;
//左子长度
++cursor_len;
++cursor;
}
int left_len = cursor_len;
//总长减去根减去左子长度为右子长度
int right_len = treeLen - cursor_len - 1;
//递归重建左子树
if(left_len)
binary_tree_rebuild(preOrder + 1, inOrder, left_len, &((*root)->left));
//递归重建右子树
if(right_len)
binary_tree_rebuild(preOrder + left_len + 1, inOrder + left_len + 1, &((*root)->left));
}
/*******************已知二叉树前序中序求后序********************/
//重建二叉树,然后后序遍历即可
void get_post_by_in_and_pre(int* preOrder, int* inOrder, int treeLen){
node_t* root = NULL;
binary_tree_rebuild(preOrder, inOrder, treeLen, &root);
if(!root)
recursive_postorder(root);
return;
}二叉树遍历相关算法
最新推荐文章于 2024-10-21 08:57:50 发布
3288

被折叠的 条评论
为什么被折叠?



