import cv2 import numpy as np import time from adafruit_servokit import ServoKit # 初始化PCA9685和舵机 kit = ServoKit(channels=16) pan_servo = 0 # 水平舵机通道 tilt_servo = 1 # 垂直舵机通道 # 舵机初始位置 pan_angle = 90 # 水平角度 (0-180) tilt_angle = 90 # 垂直角度 (0-180) # 设置舵机角度范围 kit.servo[pan_servo].angle = pan_angle kit.servo[tilt_servo].angle = tilt_angle # 加载人脸检测模型 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # 初始化摄像头 cap = cv2.VideoCapture(0) cap.set(3, 640) # 设置宽度 cap.set(4, 480) # 设置高度 # PID控制器参数 (可根据需要调整) pan_kp = 0.1 pan_ki = 0.01 pan_kd = 0.05 tilt_kp = 0.1 tilt_ki = 0.01 tilt_kd = 0.05 pan_integral = 0 pan_prev_error = 0 tilt_integral = 0 tilt_prev_error = 0 def pid_controller(error, kp, ki, kd, integral, prev_error): integral += error derivative = error - prev_error output = kp * error + ki * integral + kd * derivative prev_error = error return output, integral, prev_error def map_value(value, in_min, in_max, out_min, out_max): return (value - in_min) * (out_max - out_min) / (in_max - in_min) + out_min try: while True: ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.1, 4) if len(faces) > 0: # 获取最大的人脸 (x, y, w, h) = max(faces, key=lambda f: f[2] * f[3]) # 在图像上绘制矩形框 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) # 计算人脸中心点 face_center_x = x + w // 2 face_center_y = y + h // 2 # 计算与图像中心的偏差 frame_center_x = frame.shape[1] // 2 frame_center_y = frame.shape[0] // 2 pan_error = frame_center_x - face_center_x tilt_error = frame_center_y - face_center_y # 使用PID控制器计算舵机调整量 pan_output, pan_integral, pan_prev_error = pid_controller( pan_error, pan_kp, pan_ki, pan_kd, pan_integral, pan_prev_error) tilt_output, tilt_integral, tilt_prev_error = pid_controller( tilt_error, tilt_kp, tilt_ki, tilt_kd, tilt_integral, tilt_prev_error) # 更新舵机角度 pan_angle += pan_output tilt_angle += tilt_output # 限制舵机角度范围 pan_angle = max(0, min(180, pan_angle)) tilt_angle = max(0, min(180, tilt_angle)) # 移动舵机 kit.servo[pan_servo].angle = pan_angle kit.servo[tilt_servo].angle = tilt_angle # 显示调试信息 cv2.putText(frame, f"Pan: {pan_angle:.1f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.putText(frame, f"Tilt: {tilt_angle:.1f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) # 显示图像 cv2.imshow('Face Tracking', frame) # 按'q'退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 添加短暂延迟以减少CPU使用率 time.sleep(0.05) except KeyboardInterrupt: print("程序被用户中断") finally: # 清理资源 cap.release() cv2.destroyAllWindows() # 将舵机归位 kit.servo[pan_servo].angle = 90 kit.servo[tilt_servo].angle = 90 time.sleep(1) print("程序结束")