"过拟合"问题

什么是"过拟合" 
 过拟合:为了得到一致假设而使假设变得过度复杂称为过拟合。想像某种学习算法产生了一个过拟合的分类器,这个分类器能够百分之百的正确分类样本数据(即再拿样本中的文档来给它,它绝对不会分错),但也就为了能够对样本完全正确的分类,使得它的构造如此精细复杂,规则如此严格,以至于任何与样本数据稍有不同的文档它全都认为不属于这个类别!

一。所谓过拟合问题
A model (e.g., network) that is too complex may fit the noise, not just the signal, leading to overfitting.
Produces excessive variance in the outputs.
过拟合反映的是在学习训练中,NN对学习样本达到非常高的逼近精度,但对非学习样本,如验证学习效果的样本的逼近误差随着NN的训练次数而呈现先下降,后反而上升的奇异现象.

二。过拟合的产生
究其原因,产生过拟合是因为:
1.由于对样本数据,可能存在隐单元的表示不唯一,即产生的分类的决策面不唯一.随着学习的进行, BP算法使权值可能收敛过于复杂的决策面,并至极致.
2.权值学习迭代次数足够多(Overtraining),拟合了训练数据中的噪声和训练样例中没有代表性的特征.

三。过度拟合解决方法
1.权值衰减. 
           它在每次迭代过程中以某个小因子降低每个权值,这等效于修改E的定义,加入一个与网络权值的总量相应的惩罚项,此方法的动机是保持权值较小,避免weight decay,从而使学习过程向着复杂决策面的反方向偏。

2.适当的stopping criterion

3.验证数据
      一个最成功的方法是在训练数据外再为算法提供一套验证数据,应该使用在验证集合上产生最小误差的迭代次数,不是总能明显地确定验证集合何时达到最小误差.
           Typically 30% of training patterns;Validation set error is checked each epoch;Stop training if validation error goes up

4.Cross-validation with some patterns
          交叉验证方法在可获得额外的数据提供验证集合时工作得很好,但是小训练集合的过度拟合问题更为严重.
          k-fold交叉方法:
          把训练样例分成k份,然后进行k次交叉验证过程,每次使用不同的一份作为验证集合,其余k-1份合并作为训练集合.每个样例会在一次实验中被用作验证样例,在k-1次实验中被用作训练样例;每次实验中,使用上面讨论的交叉验证过程来决定在验证集合上取得最佳性能的迭代次数n*,然后计算这些迭代次数的均值;最后,运行一次BP算法,训练所有m个实例并迭代n*次.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值