ubuntu16.04安装caffe(GPU)

本文详细介绍了在Ubuntu16.04上安装NVIDIA GPU驱动、CUDA、cuDNN、OpenCV、Caffe及PyCaffe的全过程。从下载驱动到配置环境变量,再到测试安装结果,每一步都提供了具体命令与操作指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明:此文档参考https://blog.youkuaiyun.com/yggaoeecs/article/details/79163789

1、ubuntu16.04,GPU:Geforce 1080 Ti

2、安装GPU驱动

2.1 去NVIDIA官网http://www.nvidia.com/Download/index.aspx?lang=en-us查看适合自己显卡的驱动并下载,本人下载的是NVIDIA-Linux-x86_64-390.87.run

2.2 屏蔽自带显卡驱动

2.2.1  在终端下输入: sudo gedit /etc/modprobe.d/blacklist.conf

2.2.2 输入密码收在最后一行加上:blacklist nouveau. 这里是将Ubuntu自带的显卡驱动加入黑名单

2.2.3 在终端输入:sudo update-initramfs –u,使修改生效

2.2.4 重启电脑

2.2.5 启动电脑后,按Ctrl+Alt+F1~F6进入命令行界面(安装GPU驱动要求在命令行环境),输入用户名和密码进入用户目录

2.2.6 输入命令:sudo service lightdm stop

2.2.7 进入驱动所在的文件夹,sudo chmod +x ./NVIDIA-Linux-x86_64-384.111.run,修改权限。然后:sudo ./NVIDIA-Linux-xxx.run,进入安装程序

2.2.8 完成安装后,重启电脑

2.2.9 重启电脑后,输入以下指令进行验证:sudo nvidia-smi,若列出了GPU的信息列表则表示驱动安装成功

sudo gedit ~/.bashrc
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH 
source ~/.bashrc

3、安装CUDA

3.1 首先在官网上https://developer.nvidia.com/cuda-downloads下载CUDA。下载CUDA时一定要注意CUDA和NVIDIA显卡驱动的适配性。本人下载的是CUDA8.0 (cuda_8.0.61_375.26_linux.run)

3.2 执行以下命令:

sudo chmod 777 cuda_8.0.61_375.26_linux.run

sudo ./cuda_8.0.61_375.26_linux.run

注意:安装显卡驱动时,选择no

3.3、环境变量设置

打开~/.bashrc文件:sudo gedit ~/.bashrc

将以下内容写入到~/.bashrc尾部:

export PATH=/usr/local/cuda-8.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

source ~/.bashrc

3.4、测试CUDA是否安装成功

执行以下命令:

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery

sudo make

sudo ./deviceQuery

如果显示一些关于GPU的信息,则说明安装成功。如下图所示。

Device 1: "GeForce GTX 1080 Ti"
  CUDA Driver Version / Runtime Version          9.0 / 8.0
  CUDA Capability Major/Minor version number:    6.1
  Total amount of global memory:                 11172 MBytes (11715084288 bytes)
  (28) Multiprocessors, (128) CUDA Cores/MP:     3584 CUDA Cores
  GPU Max Clock rate:                            1582 MHz (1.58 GHz)
  Memory Clock rate:                             5505 Mhz
  Memory Bus Width:                              352-bit
  L2 Cache Size:                                 2883584 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 9 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from GeForce GTX 1080 Ti (GPU0) -> GeForce GTX 1080 Ti (GPU1) : Yes
> Peer access from GeForce GTX 1080 Ti (GPU1) -> GeForce GTX 1080 Ti (GPU0) : Yes

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.0, CUDA Runtime Version = 8.0, NumDevs = 2, Device0 = GeForce GTX 1080 Ti, Device1 = GeForce GTX 1080 Ti
Result = PASS

4、配置cuDNN

4.1、首先去官网 https://developer.nvidia.com/rdp/cudnn-download 下载cuDNN,需要注册一个账号才能下载。下载cuDNN时也一定要注意与CUDA版本的适配性。本人下载的是cudnn6.0.21(cudnn-8.0-linux-x64-v6.0.tgz)

4.2、下载cuDNN后进行解压:sudo tar -zxvf ./cudnn-8.0-linux-x64-v6.0.tgz

4.3、进入解压后的文件夹下的include目录,在命令行进行如下操作:

cd cuda/include

sudo cp cudnn.h/usr/local/cuda/include  #复制头文件到cuda头文件目录

4.4、进入lib64目录下,对动态文件进行复制和软链接

cd ..

cd lib64

sudo cp lib*  /usr/local/cuda/lib64/    #复制动态链接库

cd /usr/local/cuda/lib64/

sudo rm -rf libcudnn.so  libcudnn.so.6    #删除原有动态文件

sudo ln -s libcudnn.so.6.0.21  libcudnn.so.6  #生成软衔接(可以使用locate libcudnn.so查看版本号)

sudo ln -s libcudnn.so.6  libcudnn.so      #生成软链接

sudo ldconfig     #使配置生效

使用命令nvcc -V查看是否安装成功

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Tue_Jan_10_13:22:03_CST_2017
Cuda compilation tools, release 8.0, V8.0.61

5、安装opencv3.4.0

5.1、进入官网 : http://opencv.org/releases.html , 选择 3.4.0 版本的 source , 下载 opencv-3.4.0.zip

5.2、解压到你要安装的位置unzip opencv-3.4.0.zip,命令行进入已解压的文件夹 opencv-3.4.0 目录下,执行

mkdir build

cd build

sudo cmake -D CMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..

编译:sudo make -j8 (如果有报错,百度解决方法)

安装:sudo make install

验证:pkg-config --modversion opencv

6、安装caffe

6.1、安装相关依赖

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

6.2、下载caffe

在官网下载caffe(caffe-ssd,refineDet-ssd),解压

6.3、修改Makefile.config

sudo cp Makefile.config.example Makefile.config

6.3.1、若使用cudnn,则将

#USE_CUDNN:= 1

修改成:

USE_CUDNN:= 1

6.3.2、若使用的opencv版本是3的,则将

#OPENCV_VERSION:= 3

修改为:

OPENCV_VERSION:= 3

6.3.3、若要使用python来编写layer,则将

#WITH_PYTHON_LAYER:= 1 

修改为:

WITH_PYTHON_LAYER := 1

6.3.4、重要的一项

#Whatever else you find you need goes here. 下面的

INCLUDE_DIRS:= $(PYTHON_INCLUDE) /usr/local/include

LIBRARY_DIRS:= $(PYTHON_LIB) /usr/local/lib /usr/lib

修改为:

INCLUDE_DIRS:= $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial

LIBRARY_DIRS:= $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/usr/lib/x86_64-linux-gnu/hdf5/serial     

6.4、修改Makefile文件

6.4.1、将

NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC$(COMMON_FLAGS)

替换为:

NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX)-Xcompiler -fPIC $(COMMON_FLAGS)

6.4.2、将

LIBRARIES += glog gflags protobuf boost_system boost_filesystem boost_regex m hdf5_hl hdf5

替换为:

LIBRARIES += glog gflags protobuf boost_system boost_filesystem boost_regex m hdf5_serial_hl hdf5_serial

6.4.3、将/usr/local/cuda/include/host_config.h 文件中119行左右的

#error -- unsupported GNU version! gcc versions later than 5 are not supported!

替换为

//#error -- unsupported GNU version! gcc versions later than 5 are not supported!

6.5、编译

make all -j8(在root模式下)

6.6、测试

make runtest,出现下图样式说明caffe配置成功

 7、安装pycaffe

make pycaffe -j8

使用命令gedit ~/.bashrc,在文件最后添加

export PYTHONPATH=/xxx/caffe/python:$PYTHONPATH

source ~/.bashrc

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值