PCA参数如下:
class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None)[source]
参数说明:
n_components
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n
类型:int 或者 string,缺省时默认为None,所有成分被保留。
赋值为int,比如n_components=1,将把原始数据降到一个维度。
赋值为string,比如n_components=’mle’,将自动选取特征个数n,使得满足所要求的方差百分比。
copy
类型:bool,True或者False,缺省时默认为True。
意义:表示是否在运行算法时,将原始训练数据复制一份。
若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,因为是在原始数据的副本上进行运算;
若为False,则运行PCA算法后,原始训练数据的值会改,因为是在原始数据上进行降维计算。
whiten
类型:bool,缺省时默认为False
意义:白化,使得每个特征具有相同的方差。关于“白化