
深度学习
吴恩达深度学习笔记
吴恩达深度学习课后作业
jianming21
这个作者很懒,什么都没留下…
展开
-
Coursera吴恩达课程笔记 5.3《序列模型》-- Sequence models & Attention mechanism
文章目录1. Basic Models2. Picking the most likely sentence3. Beam Search4. Refinements to Beam Search5. Error analysis in beam search6. Bleu Score(optional)7. Attention Model Intuition8. Attention Models9...转载 2020-05-01 01:24:47 · 367 阅读 · 0 评论 -
Coursera吴恩达课程笔记 5.2《序列模型》-- NLP & Word Embeddings
文章目录1. Word Representation2. Using word embedding3. Properties of word embeddings4. Embedding matrix5. Learning word embeddings6. Word2Vec7. Negative Sampling8 GloVe word vectors9. Sentiment Classific...转载 2020-05-01 00:40:55 · 331 阅读 · 0 评论 -
Coursera吴恩达课程笔记 5.1《序列模型》-- 循环神经网络(RNN)
文章目录1. Why sequence models2. Notation3. Recurrent Neural Network Model4. Backpropagation through time5. Different types of RNNs6. Language model and sequence generation7 Sampling novel sequences8. Van...转载 2020-04-30 21:28:25 · 431 阅读 · 0 评论 -
Coursera吴恩达课程笔记 4.4《卷积神经网络》-- 人脸识别与神经风格迁移
文章目录1. What is face recognition2. One Shot Learning3. Siamese Network4. Triplet Loss5. Face Verification and Binary Classification6. What is neural style transfer7. What are deep ConvNets learning8. C...转载 2020-04-30 17:09:57 · 242 阅读 · 0 评论 -
Coursera吴恩达课程笔记 4.3《卷积神经网络》-- 目标检测
文章目录1. Object Localization2. Landmark Detection3. Object Detection4. Convolutional Implementation of Sliding Windows5. Bounding Box Predictions6. Intersection Over Union7. Non-max Suppression8. Anchor...转载 2020-04-30 12:16:59 · 267 阅读 · 0 评论 -
Coursera吴恩达课程笔记 4.2《卷积神经网络》-- 深度卷积模型:案例研究
文章目录1. Why look at case studies2. Classic Networks3. ResNets4. Why ResNets Work5. Networks in Networks and 1x1 Convolutions6. Inception Network Motivation7.Inception Network8. Using Open-Source Implem...转载 2020-04-30 11:36:22 · 214 阅读 · 0 评论 -
Coursera吴恩达课程笔记 4.1《卷积神经网络》-- 卷积神经网络基础
《Convolutional Neural Networks》是Andrw Ng深度学习专项课程中的第四门课。这门课主要介绍卷积神经网络(CNN)的基本概念、模型和具体应用。该门课共有4周课时,所以我将分成4次笔记来总结,这是第一节笔记。1. Computer Vision机器视觉(Computer Vision)是深度学习应用的主要方向之一。一般的CV问题包括以下三类:Image Cl...转载 2020-04-30 10:36:32 · 332 阅读 · 0 评论 -
Coursera吴恩达课程笔记 3,2《构建机器学习项目》-- 机器学习策略(下)
文章目录1. Carrying out error analysis2. Cleaning up incorrectly labeled data3. Build your first system quickly then iterate4. Training and testing on different distribution5. Bias and Variance with misma...转载 2020-04-30 07:47:17 · 268 阅读 · 0 评论 -
Coursera吴恩达课程笔记 3.1《构建机器学习项目》-- 机器学习策略(上)
文章目录1. Why ML Strategy2. Orthogonalization3. Single number evaluation metric4. Satisficing and Optimizing metic5. Train/dev/test distributions6. Size of the dev and test sets7. When to change dev/test...转载 2020-04-29 21:25:07 · 359 阅读 · 0 评论 -
Coursera吴恩达课程笔记 2.3《优化深度神经网络》-- 超参数调试、Batch正则化和编程框架
文章目录1. Tuning Process2. Using an appropriate scale to pick hyperparameters3. Hyperparameters tuning in practice: Pandas vs. Caviar4. Normalizing activations in a network5. Fitting Batch Norm into a ne...转载 2020-04-27 01:23:31 · 411 阅读 · 0 评论 -
Coursera吴恩达课程笔记 2.2《优化深度神经网络》-- 优化算法
文章目录1. Mini-batch gradient descent上节课我们主要介绍了如何建立一个实用的深度学习神经网络。包括Train/Dev/Test sets的比例选择,Bias和Variance的概念和区别:Bias对应欠拟合,Variance对应过拟合。接着,我们介绍了防止过拟合的两种方法:L2 regularization和Dropout。然后,介绍了如何进行规范化输入,以加快梯度...转载 2020-04-26 23:29:47 · 174 阅读 · 0 评论 -
Coursera吴恩达课程笔记 2.1《优化深度神经网络》-- 深度学习的实用层面
文章目录1. Train/Dev/Test sets2. Bias/Variance3. Basic Recipe for Machine Learning4. Regularization5. Why regularization reduces overfitting6. Dropout Regularization7. Understanding Dropout8. Other regula...转载 2020-04-19 20:20:45 · 397 阅读 · 0 评论 -
Coursera吴恩达课程笔记 1.5《神经网络与深度学习》-- 深层神经网络
文章目录1. Deep L-layer neural network2. Forward Propagation in a Deep Network3. Getting your matrix dimensions right4. Why deep representations?5. Building blocks of deep neural networks6. Forward and Ba...转载 2020-04-19 13:39:13 · 191 阅读 · 0 评论 -
Coursera吴恩达课程笔记 1.4《神经网络与深度学习》-- 浅层神经网络
文章目录1. Neural Networks Overview2. Neural Network Representation3. Computing a Neural Network’s Output4. Vectorizing across multiple examples5. Explanation for Vectorized Implementation6. Activation fu...转载 2020-04-19 01:56:12 · 361 阅读 · 0 评论 -
Coursera吴恩达课堂笔记 1.3《神经网络与深度学习》-- 神经网络基础之Python与向量化
文章目录1. Vectorization2. More Vectorization Examples3. Vectorizing Logistic Regression4. Vectorizing Logistic Regression’s Gradient Output5. Broadcasting in Python6. A note on python/numpy vectors7. Qui...转载 2020-04-18 22:20:24 · 200 阅读 · 1 评论 -
Coursera吴恩达课堂笔记 1.2《神经网络与深度学习》-- 神经网络基础之逻辑回归
文章目录上节课我们主要对深度学习(Deep Learning)的概念做了简要的概述。我们先从房价预测的例子出发,建立了标准的神经网络(Neural Network)模型结构。然后从监督式学习入手,介绍了Standard NN,CNN和RNN三种不同的神经网络模型。接着介绍了两种不同类型的数据集:Structured Data和Unstructured Data。最后,我们解释了近些年来深度学习性...转载 2020-04-18 22:20:15 · 322 阅读 · 0 评论 -
Coursera吴恩达课堂笔记 1.1《神经网络与深度学习》-- 深度学习概述
文章目录What is a neural network?Supervised Learning with Neural NetworksWhy is Deep Learning taking off?About this CourseSummary原文链接 https://blog.youkuaiyun.com/red_stone1/article/details/77799014吴恩达(Andrew...转载 2020-04-18 22:20:06 · 237 阅读 · 0 评论