hdu2844—Coins(多重背包)

本文针对多重背包问题进行了详细的解析,并提供了两种不同的实现方法:一种是通过二进制拆分进行优化,另一种是利用单调队列优化。同时,还提供了一个具体的编程实例,包括输入输出样例,帮助读者更好地理解并解决多重背包问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:传送门

Coins

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15108    Accepted Submission(s): 5994


Problem Description
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened purse and found there were some coins. He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.

You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
 

Input
The input contains several test cases. The first line of each test case contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤ 100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
 

Output
For each test case output the answer on a single line.
 

Sample Input

 
3 101 2 4 2 1 12 51 4 2 10 0
 

Sample Output

 
84
 

Source
 

解题思路:多重背包

注意:用多重背包解会卡常数时间,单调队列优化多重背包(0(N*V))一直tle,将完全背包的情况剥离出来,才过掉。


二进制拆分

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <stack>
#include <queue>

using namespace std;

typedef long long ll;
typedef pair<int,int>PA;
const int N = 120;
const int M = 100119;
const int INF = 0x3fffffff;

int cost[N],num[N],dp[M];

int main()
{
    int n,m;
    while( ~scanf("%d%d",&n,&m)&&n&&m ){
        memset( dp , 0 , sizeof(dp) );
        for( int i = 0 ; i < n ; ++i ){
            scanf("%d",&cost[i]);
        }
        for( int i = 0 ; i < n ; ++i ){
            scanf("%d",&num[i]);
        }
        for( int i = 0 ; i < n ; ++i ){
            //当物品数量乘花费>=m,用完全背包解
            if( cost[i]*num[i] >= m ){
                for( int j = cost[i] ; j <= m ; ++j ){
                    dp[j] = max( dp[j] , dp[j-cost[i]]+cost[i] );
                }
                continue;
            }
            int rec = num[i],k = 1;
            //将物品数量分解成二进制数用01背包解
            //当时k<rec写成k<num[i]runtime了m次,心累
            while( k < rec ){
                for( int j = m ; j >= k*cost[i] ; --j ){
                    dp[j] = max( dp[j] , dp[j-k*cost[i]]+cost[i]*k );
                }
                rec = rec-k;
                k = k*2;
            }
            for( int j = m ; j >= rec*cost[i] ; --j ){
                dp[j] = max( dp[j] , dp[j-rec*cost[i]]+cost[i]*rec );
            }
        }
        int ans = 0;
        for( int i = 1 ; i <= m ; ++i ){
            if( dp[i] == i ) ++ans;
        }
        printf("%d\n",ans);
    }
    return 0;
}


单调队列优化

#include <iostream>
#include <stack>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>

using namespace std;

const int N = 110;
const int M = 100010;
const int INF = 0x3fffffff;

struct Node{
    int id,val;
    Node(){}
    Node(int _id,int _v){
        id = _id; val = _v;
    }
}q[M];

int dp[M],V;   ////V是所有商品的总价值
int cnt[N],v[N];

void ZeroOnePack(int cost,int value)
{
    for(int i = V; i >= cost; --i)
        dp[i] = max(dp[i],dp[i-cost]+value);
}

void CompletePack(int cost,int value)
{
    for(int i = cost; i <= V; ++i)
        dp[i] = max(dp[i],dp[i-cost]+value);
}

void MultiPack(int num,int cost,int value)
{
    for(int j = 0; j < cost; ++j){
        int head = 1,tail = 0;
        for(int k = j,i = 0; k <= V; k += cost, ++i){
            int r = dp[k]-i*value;
            while(head <= tail && r >= q[tail].val) tail--;
            q[++tail] = Node(i,r);
            while(q[head].id < i-num) head++;
            dp[k] = q[head].val+i*value;
        }
    }
}

int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        if(n == 0 && m == 0) break;
        V = m;
        for(int i = 0; i < n; ++i) scanf("%d",&v[i]);
        for(int i = 0; i < n; ++i) scanf("%d",&cnt[i]);
        memset(dp,0,sizeof(dp));
        for(int i = 0; i < n; ++i){
            if(m <= cnt[i]*v[i]) CompletePack(v[i],v[i]);
            else MultiPack(cnt[i],v[i],v[i]);
        }
//        for(int i = 1; i <= m; ++i)
//            cout << dp[i] << " ";
        int ans = 0;
        for(int i = 1; i <= m; ++i)
            if(dp[i] == i) ans++;
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值