#coding=utf-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
num_points = 1000
vector_set = []
#构造训练数据
for i in range(num_points):
x1 = np.random.normal(0.0,0.55)
y1 = x1*0.1 + 0.3 + np.random.normal(0.0,0.03)
vector_set.append([x1,y1])
x_data = [v[0] for v in vector_set]
y_data = [v[1] for v in vector_set]
#plt.plot(x_data,y_data,'ro')
#plt.legend()
#plt.show()
w = tf.Variable(tf.random_uniform([1],-1.0,1.0))
b = tf.Variable(tf.zeros([1]))
y = w*x_data + b
#损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
#梯度下降学习算法
train = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
#初始参数
print(sess.run(w),sess.run(b))
for i in range(10):
sess.run(train)
#print(i,sess.run(w)*x_data+sess.run(b))
print(i,sess.run(loss))
print(i,sess.run(w),sess.run(b))
#可视化回归过程
if i>=0:
plt.plot(x_data,y_data,'ro')
plt.plot(x_data,sess.run(w)*x_data + sess.run(b))
plt.xlabel("x")
plt.xlim(-2,2)
plt.ylim(0.1,0.6)
plt.ylabel('y')
plt.legend()
plt.show()
Tensorflow-线性回归
最新推荐文章于 2021-04-18 17:46:05 发布
本文通过构建训练数据集并使用TensorFlow实现了一个简单的线性回归模型,演示了如何定义变量、设置损失函数及应用梯度下降算法进行训练的过程,并通过可视化方式展示了回归效果。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型
1068

被折叠的 条评论
为什么被折叠?



