poj_1679_判断最小生成树是否唯一

本文详细介绍了最小生成树(MST)的概念及其算法实现过程。包括定义了生成树和最小生成树,阐述了如何通过算法确定特定条件下最小生成树是否唯一,并提供了一个具体的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Unique MST

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:
1. V’ = V.
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!
mean
第一行输入t,代表t组案例,下一行输入n,m
代表有n个村,m 条边
接下来m行输入 u,v,w u ,v村的位置,w权值
ans
什么情况下,最小生成树不唯一,在有权值相同的边的情况下,枚举每个边

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int n, m;
struct node
{
    int u, v, w;
    int used, equ, del;
} nn[99999];
int pre[99999], flag;
void init()
{
    for (int i = 0; i <= n; i++)
        pre[i] = i;
}
bool cmp(node a, node b)
{
    return a.w<b.w;
}
int Find(int x)
{
    return pre[x] == x ? x : Find(pre[x]);
}
int solve()
{
    int i, j, ans = 0, cnt = 0;
    init();
    for (i = 0; i<m; i++)
    {
        if (nn[i].del) continue;
        int fx = Find(nn[i].u), fy = Find(nn[i].v);
        if (fx != fy)
        {
            if (!flag)
                nn[i].used = 1;
            ans += nn[i].w;
            cnt++;
            pre[fx] = fy;
        }
        if (cnt == n - 1)
            break;
    }
    if (cnt != n - 1)
        ans = -1;
    return ans;
}
int main()
{
    int t, i, j;
    cin >> t;
    {
        while (t--)
        {
            cin >> n >> m;
            for (i = 0; i<m; i++)
            {
                scanf("%d%d%d", &nn[i].u, &nn[i].v, &nn[i].w);
                nn[i].del = nn[i].equ = nn[i].used = 0;
            }
            sort(nn, nn + m, cmp);
            for (i = 0; i<m; i++)
            {
                for (j = 0; j<m; j++)
                {
                    if (i != j&&nn[i].w == nn[j].w)
                        nn[i].equ = nn[j].equ = 1;
                }
            }
             flag = 0;
            int ans = solve();
            // puts("(*(*");
            //  cout<<ans<<endl;
            flag = 1;
            if (ans == -1)
            {
                puts("Not Unique!");
                continue;
            }

            int f = 0;
            for (i = 0; i<m; i++)
            {
                if (nn[i].equ&&nn[i].used)
                {
                    nn[i].del = 1;
                    int tmp = solve();
                    if (tmp == ans)
                    {
                        f = 1;
                        puts("Not Unique!");
                        break;
                    }
                    nn[i].del = 0;
                }

            }
            if (!f)
                cout << ans << endl;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值