N-Queens
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
This problem is kind of difficult to solve. The general thought is that for every row, we use a loop to put queen to each column. If the queens do not attack each other, entering next row recursively. This solution refers to the Code Gankers' blog http://blog.youkuaiyun.com/linhuanmars/article/details/20667175
1. keep an array to store the queen column position for every row. For example, for the 4-queens puzzle, we have two solutions. For the first solution, the array should be [1,3,0,2] and for the second solution, the array should be [2,0,3,1].
2. For the queen column position for each row, we need to check whether the position is valid to put the queen. For example, if the array is [1,1,0,2], it is invalid, because two queens appear at the same column. For another example, [2,3,3,1] is also invalid, because for the first row and second row, the two queens share the same diagonal. We need a private method to check whether the column position is valid or not.
public class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> ret = new ArrayList<List<String>>();
helper(n,0,new int[n],ret);
return ret;
}
private void helper(int n, int row, int[] columnForRow, List<List<String>> ret) {
if (n == row) {
ArrayList<String> list = new ArrayList<String>();;
for (int i = 0; i < n; i++) {
StringBuilder sb = new StringBuilder();
for (int j = 0; j < n; j++) {
if (columnForRow[i] == j)
sb.append("Q");
else
sb.append(".");
}
list.add(sb.toString());
}
ret.add(list);
return;
} else {
for (int i = 0; i < n; i++) {
columnForRow[row] = i;
if (check(row, columnForRow)) {
helper(n, row + 1, columnForRow, ret);
}
}
}
}
private boolean check(int row, int[] columnForRow) {
for (int i = 0; i < row; i++) {
if (columnForRow[i] == columnForRow[row] || Math.abs(columnForRow[i] - columnForRow[row]) == row - i)
return false;
}
return true;
}
}