1023. Have Fun with Numbers (20)
Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:1234567899Sample Output:
Yes 2469135798
#include<stdio.h>
#include<string.h>
int r;
struct bign{
int d[1000];
int len;
bign()
{
memset(d,0,sizeof(d));
len=0;
}
};
bign change(char str[])
{
bign a;
a.len=strlen(str);
for(int i=0;i<a.len;i++)
{
a.d[i]=str[a.len-1-i]-'0';
}
return a;
}
bign multi(bign a,int b)
{
bign c;
int carry=0;
for(int i=0;i<a.len;i++)
{
int temp=a.d[i]*b+carry;
c.d[c.len++]=temp%10;
carry=temp/10;
}
while(carry!=0)
{
c.d[c.len++]=carry%10;
carry/=10;
}
return c;
}
void prin(bign a)
{
for(int i=a.len-1;i>=0;i--)
{
printf("%d",a.d[i]);
}
}
int judge(bign a,bign b)
{
if(a.len!=b.len) return 0;
else
{
int counta[10]={0},countb[10]={0};
for(int i=0;i<a.len;i++)
{
counta[a.d[i]]++;
countb[b.d[i]]++;
}
for(int i=0;i<10;i++)
{
if(counta[i]!=countb[i]) return 0;
}
return 1;
}
}
int main()
{
char str[30];
scanf("%s",str);
bign a=change(str);
bign b=multi(a,2);
if(judge(a,b)==1) printf("Yes\n");
else printf("No\n");
prin(b);
return 0;
}