遗传算法的多车场车辆路径问题求解

遗传算法求解多车场VRP
一、问题建模与数学描述

多车场车辆路径问题(MDVRP)可建模为带约束的组合优化问题:

  • 目标函数:最小化总运输成本(距离/时间/费用)

    请添加图片描述

    其中KKK为车场数,PkP_kPk为第kkk辆车的路径,dijd_ijdij为节点间距离

  • 约束条件: 每个客户仅被访问一次 车辆从所属车场出发并返回 车辆载重不超过容量限制 时间窗约束(若适用)


二、遗传算法设计
1. 染色体编码

采用多染色体编码表示多车场路径:

% 示例:4车场,10客户
chromosome = [3,1,5,2; 4,6,7,8; 9,10,3,2; 1,4,5,6]; 
% 每行表示一个车场的客户访问序列,数字代表客户编号
2. 适应度函数

综合路径长度与约束违反惩罚:

function fitness = calc_fitness(chromosome, dist_matrix, demand, capacity)
    total_dist = 0;
    penalty = 0;
    for i = 1:size(chromosome,1)
        route = chromosome(i,:);
        route_dist = 0;
        load = 0;
        for j = 2:length(route)
            route_dist = route_dist + dist_matrix(route(j-1), route(j));
            load = load + demand(route(j));
        end
        % 时间窗惩罚(示例)
        if load > capacity
            penalty = penalty + 1000; 
        end
        total_dist = total_dist + route_dist;
    end
    fitness = 1/(total_dist + penalty);
end
3. 遗传操作
  • 选择:锦标赛选择(Tournament Selection)

    function winner = tournament_selection(pop, fitness, tournament_size)
        candidates = randperm(size(pop,1), tournament_size);
        [~, idx] = min(fitness(candidates));
        winner = pop(candidates(idx),:);
    end
    
  • 交叉:改进顺序交叉(OX)保留车场连续性

    function child = ox_crossover(parent1, parent2)
        n = size(parent1,2);
        child = zeros(1,n);
        % 随机选择两个交叉点
        p1 = randperm(n,2);
        p1 = sort(p1);
        % 复制父代1的中间段
        child(p1(1):p1(2)) = parent1(p1(1):p1(2));
        % 填充父代2剩余基因
        ptr = p1(2)+1;
        for i = 1:n
            if ptr > n
                ptr = 1;
            end
            if ~ismember(parent2(i), child)
                child(ptr) = parent2(i);
                ptr = ptr+1;
            end
        end
    end
    
  • 变异:交换突变与车场重分配

    function mutated = swap_mutation(chromosome, prob)
        if rand < prob
            idx1 = randi(size(chromosome,2));
            idx2 = randi(size(chromosome,2));
            % 交换不同车场的客户
            while chromosome(1,idx1) == chromosome(1,idx2)
                idx2 = randi(size(chromosome,2));
            end
            temp = chromosome(1,idx1);
            chromosome(1,idx1) = chromosome(1,idx2);
            chromosome(1,idx2) = temp;
        end
    end
    

三、改进
1. 自适应参数调整
  • 动态交叉率:

    pc=pc0⋅e−λ⋅favg/fmax
    
  • 变异率与种群多样性关联

2. 混合启发式算法
  • 2-opt局部搜索优化子路径:

    function new_route = two_opt(route, dist_matrix)
        n = length(route);
        improved = true;
        while improved
            improved = false;
            for i = 1:n-2
                for j = i+2:n
                    new_seg = route(i:j);
                    new_dist = sum(dist_matrix(new_seg(1:end-1), new_seg(2:end)));
                    old_dist = sum(dist_matrix(route(i:j-1), route(j:end)));
                    if new_dist < old_dist
                        route(i:j) = new_seg;
                        improved = true;
                    end
                end
            end
        end
        new_route = route;
    end
    
3. 多目标优化

采用NSGA-II算法处理多目标:

% 帕累托前沿维护
function fronts = fast_non_dominated_sort(population)
    fronts = {};
    ranks = zeros(size(population,1),1);
    dominated_count = zeros(size(population,1),1);
    dominates = cell(size(population,1),1);
    
    for i = 1:size(population,1)
        for j = 1:size(population,1)
            if i ~= j
                if dominates(population(i), population(j))
                    dominates{i} = [dominates{i}, j];
                elseif dominates(population(j), population(i))
                    dominated_count(i) = dominated_count(i) + 1;
                end
            end
        end
        if dominated_count(i) == 0
            ranks(i) = 1;
            fronts{1} = [fronts{1}, i];
        end
    end
    
    front_idx = 1;
    while ~isempty(fronts{front_idx})
        next_front = [];
        for i = fronts{front_idx}
            for j = dominates{i}
                dominated_count(j) = dominated_count(j) - 1;
                if dominated_count(j) == 0
                    ranks(j) = front_idx + 1;
                    next_front = [next_front, j];
                end
            end
        end
        front_idx = front_idx + 1;
        fronts{front_idx} = next_front;
    end
end

四、MATLAB实现流程
%% 参数设置
num_depots = 4;    % 车场数量
num_customers = 50;% 客户数量
vehicle_capacity = 100; % 车辆容量
pop_size = 100;    % 种群大小
max_generations = 500; % 最大迭代次数

%% 数据加载
load('depot_customers.mat'); % 包含坐标、需求等数据

%% 初始化种群
population = initialize_population(pop_size, num_depots, num_customers);

%% 主循环
for gen = 1:max_generations
    % 适应度计算
    fitness = arrayfun(@(i) calc_fitness(population(i,:), dist_matrix, demand, vehicle_capacity), 1:pop_size);
    
    % 选择
    new_population = [];
    for i = 1:pop_size
        parent1 = tournament_selection(population, fitness, 5);
        parent2 = tournament_selection(population, fitness, 5);
        % 交叉
        child = ox_crossover(parent1, parent2);
        % 变异
        child = swap_mutation(child, 0.02);
        new_population = [new_population; child];
    end
    
    % 更新种群
    population = new_population;
    
    % 输出当前最优
    [best_fitness, best_idx] = max(fitness);
    best_route = population(best_idx,:);
    fprintf('Generation %d: Best Fitness = %.2f\n', gen, best_fitness);
end

%% 结果可视化
plot_routes(best_route, depot_coords, customer_coords);

参考代码 遗传算法求解多车场车辆路径问题 www.youwenfan.com/contentcsk/64104.html

五、性能优化
  1. 精英保留策略:每代保留前5%最优个体

  2. 邻域搜索增强:在变异操作中嵌入3-opt优化

  3. 并行计算:利用MATLAB Parallel Toolbox加速适应度计算

    parfor i = 1:pop_size
        fitness(i) = calc_fitness(population(i,:), ...);
    end
    
  4. 动态仓库分配:根据客户分布聚类调整车场服务区域

    % K-means聚类分配客户到车场
    [idx, centers] = kmeans(customer_coords, num_depots);
    depot_assignment = idx;
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值