论文阅读笔记-Segmentation-Aware Convolutional Networks Using Local Attention Masks

该论文提出了一种新的卷积网络结构,利用局部注意力掩码改进了CNN的卷积过程,使神经元能够专注于同类区域,适用于语义分割和光流估计任务。通过像素embedding增强特征表示,并引入segmentation-aware卷积和CRF提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 发表于ICCV2017的论文Segmentation-Aware Convolutional Networks Using Local Attention Masks用segmentation-aware的convolution代替CNN中传统的convolution,使得计算过程中神经元可以注意于和它属于同一类的区域。在semantic segmentation和optical flow estimation问题上取得了好的效果。

文章亮点:

1. Embedding的作用及实现

    使用和VGG-16前7层类似的网络结构训练一种FCN网络,来实现pixel的embedding,即由R3映射为R64,使得同一物体的像素点距离近,不同物体的像素点距离远。各层都有监督信息,各层的输出融合后得到最终的embedding。学embedding network的目标函数为:

    embedding得到的feature vector,用于指示各个像素点与周围像素点的类别近邻关系。在计算卷积时用作加权。

2. segmentation-aware convolution

    论文中的卷积采用和Caffe类似的卷积计算方式实现,即先做image-to-column的变换,然后将卷积转化为矩阵乘法。本论文的方法需要对矩阵乘法插入weight mask。

    对于输入H*W的feature map,每个点与其K个近邻计算距离,通过image-to-column的操作,得到(H*W)*K的mask矩阵。按照image-to-column的排列,原图像每个位置抽取其K个近邻,也可以得到(H*W)*K的矩阵。点对点相乘即实现加权。

 

3. segmentation-aware CRF

    计算CRF时,将原始的RGB特征替换为embedding后的特征。
--------------------- 
作者:乐兮山南水北 
来源:优快云 
原文:https://blog.youkuaiyun.com/u012494820/article/details/78944806 
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值