#include <iostream>
#include <string>
using namespace std;
long long getcomb(int n,int m)
{
long long a=1;
long long b=1;
for(int i=0;i<m;i++)
{
a*=n-i;
b*=m-i;
}
return a/b;
}
long long getresult(string a,string b,int n){
long long sum=1;
if(a.size()==1)
return sum;
else{
int count=0;
string sub1,sub2;
a=a.substr(1);
b=b.substr(0,b.size()-1);
while(a.size()!=0)
{
int pos=b.find(a[0]);
sub1=a.substr(0,pos+1);
sub2=b.substr(0,pos+1);
a=a.substr(pos+1);
b=b.substr(pos+1);
count++;
sum*=getresult(sub1,sub2,n);
}
return sum*getcomb(n,count);
}
}
void func()
{
int m;
string s1,s2;
while(cin>>m)
{
if(m==0)break;
cin>>s1>>s2;
long long ret=getresult(s1,s2,m);
cout<<ret<<endl;
}
}
int main(int argc, char *argv[])
{
//printf("Hello, world\n");
func();
return 0;
}
给出前序后序,求中序情况个数
分析:
例如:
10 abc bca
根节点为a是确定的,接下来是 bc bc
可知b,c在同一级别,有C(10,2)=45 (10个位置中取两个)
2 abc cba同样根节点为a,然后是 bc cb
b,c在两层 C(2,1) * C(2,1)=4
对于这个就有些复杂了,
13 abejkcfghid jkebfghicda第一步拆分为 三部分 (bejk, cfghi, d) * C(13,3)
再继续递归下去,直到字符串长度为1
-
题目描述:
-
We are all familiar with pre-order, in-order and post-order traversals of binary trees. A common problem in data structure classes is to find the pre-order traversal of a binary tree when given the in-order and post-order traversals. Alternatively, you can find the post-order traversal when given the in-order and pre-order. However, in general you cannot determine the in-order traversal of a tree when given its pre-order and post-order traversals. Consider the four binary trees below:
All of these trees have the same pre-order and post-order traversals. This phenomenon is not restricted to binary trees, but holds for general m-ary trees as well.
-
输入:
-
Input will consist of multiple problem instances. Each instance will consist of a line of the form
m s1 s2
indicating that the trees are m-ary trees, s1 is the pre-order traversal and s2 is the post-order traversal.All traversal strings will consist of lowercase alphabetic characters. For all input instances, 1 <= m <= 20 and the length of s1 and s2 will be between 1 and 26 inclusive. If the length of s1 is k (which is the same as the length of s2, of course), the first k letters of the alphabet will be used in the strings. An input line of 0 will terminate the input.
-
输出:
-
For each problem instance, you should output one line containing the number of possible trees which would result in the pre-order and post-order traversals for the instance. All output values will be within the range of a 32-bit signed integer. For each problem instance, you are guaranteed that there is at least one tree with the given pre-order and post-order traversals.
-
样例输入:
-
2 abc cba 2 abc bca 10 abc bca 13 abejkcfghid jkebfghicda
-
样例输出:
-
4 1 45 207352860