import json
import gzip
# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz'))
train_images, train_labels = train_set[0][:1000], train_set[1][:1000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))
image, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
plt.savefig('conv-number5.pdf')
from paddle.vision.transforms import Compose, Resize, Normalize
# 数据预处理
transforms = Compose([Resize(32), Normalize(mean=[127.5], std=[127.5], data_format='CHW')])
import random
import paddle.io as io
class MNIST_dataset(io.Dataset):
def __init__(self, dataset, transforms, mode='train'):
self.mode = mode
self.transforms =transforms
self.dataset = dataset
def __getitem__(self, idx):
# 获取图像和标签
image, label = self.dataset[0][idx], self.dataset[1][idx]
image, label = np.array(image).astype('float32'), int(label)
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
image = self.transforms(image)
return image, label
def __len__(self):
return len(self.dataset[0])
# 固定随机种子
random.seed(0)
# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
import paddle.nn.functional as F
class Model_LeNet(nn.Layer):
def __init__(self, in_channels, num_classes=10):
super(Model_LeNet, self).__init__()
# 卷积层:输出通道数为6,卷积核大小为5×5
self.conv1 = Conv2D(in_channels=in_channels, out_channels=6, kernel_size=5, weight_attr=paddle.ParamAttr())
# 汇聚层:汇聚窗口为2×2,步长为2
self.pool2 = Pool2D(size=(2,2), mode='max', stride=2)
# 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5×5,步长为1
self.conv3 = Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1, weight_attr=paddle.ParamAttr())
# 汇聚层:汇聚窗口为2×2,步长为2
self.pool4 = Pool2D(size=(2,2), mode='avg', stride=2)
# 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5×5
self.conv5 = Conv2D(in_channels=16, out_channels=120, kernel_size=5, stride=1, weight_attr=paddle.ParamAttr())
# 全连接层:输入神经元为120,输出神经元为84
self.linear6 = nn.Linear(120, 84)
# 全连接层:输入神经元为84,输出神经元为类别数
self.linear7 = nn.Linear(84, num_classes)
def forward(self, x):
# C1:卷积层+激活函数
output = F.relu(self.conv1(x))
# S2:汇聚层
output = self.pool2(output)
# C3:卷积层+激活函数
output = F.relu(self.conv3(output))
# S4:汇聚层
output = self.pool4(output)
# C5:卷积层+激活函数
output = F.relu(self.conv5(output))
# 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
output = paddle.squeeze(output, axis=[2,3])
# F6:全连接层
output = F.relu(self.linear6(output))
# F7:全连接层
output = self.linear7(output)
return output
# 这里用np.random创建一个随机数组作为输入数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 通过调用LeNet从基类继承的sublayers()函数,查看LeNet中所包含的子层
print(model.sublayers())
x = paddle.to_tensor(inputs)
for item in model.sublayers():
# item是LeNet类中的一个子层
# 查看经过子层之后的输出数据形状
try:
x = item(x)
except:
# 如果是最后一个卷积层输出,需要展平后才可以送入全连接层
x = paddle.reshape(x, [x.shape[0], -1])
x = item(x)
if len(item.parameters())==2:
# 查看卷积和全连接层的数据和参数的形状,
# 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
print(item.full_name(), x.shape, item.parameters()[0].shape,
item.parameters()[1].shape)
else:
# 汇聚层没有参数
print(item.full_name(), x.shape)
class Paddle_LeNet(nn.Layer):
def __init__(self, in_channels, num_classes=10):
super(Paddle_LeNet, self).__init__()
# 卷积层:输出通道数为6,卷积核大小为5*5
self.conv1 = nn.Conv2D(in_channels=in_channels, out_channels=6, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool2 = nn.MaxPool2D(kernel_size=2, stride=2)
# 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
self.conv3 = nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool4 = nn.AvgPool2D(kernel_size=2, stride=2)
# 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
self.conv5 = nn.Conv2D(in_channels=16, out_channels=120, kernel_size=5)
# 全连接层:输入神经元为120,输出神经元为84
self.linear6 = nn.Linear(in_features=120, out_features=84)
# 全连接层:输入神经元为84,输出神经元为类别数
self.linear7 = nn.Linear(in_features=84, out_features=num_classes)
def forward(self, x):
# C1:卷积层+激活函数
output = F.relu(self.conv1(x))
# S2:汇聚层
output = self.pool2(output)
# C3:卷积层+激活函数
output = F.relu(self.conv3(output))
# S4:汇聚层
output = self.pool4(output)
# C5:卷积层+激活函数
output = F.relu(self.conv5(output))
# 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
output = paddle.squeeze(output, axis=[2,3])
# F6:全连接层
output = F.relu(self.linear6(output))
# F7:全连接层
output = self.linear7(output)
return output
import time
# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
x = paddle.to_tensor(inputs)
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 创建Paddle_LeNet类的实例,指定模型名称和分类的类别数目
paddle_model = Paddle_LeNet(in_channels=1, num_classes=10)
# 计算Model_LeNet类的运算速度
model_time = 0
for i in range(60):
strat_time = time.time()
out = model(x)
end_time = time.time()
# 预热10次运算,不计入最终速度统计
if i < 10:
continue
model_time += (end_time - strat_time)
avg_model_time = model_time / 50
print('Model_LeNet speed:', avg_model_time, 's')
# 计算Paddle_LeNet类的运算速度
paddle_model_time = 0
for i in range(60):
strat_time = time.time()
paddle_out = paddle_model(x)
end_time = time.time()
# 预热10次运算,不计入最终速度统计
if i < 10:
continue
paddle_model_time += (end_time - strat_time)
avg_paddle_model_time = paddle_model_time / 50
print('Paddle_LeNet speed:', avg_paddle_model_time, 's')
# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
x = paddle.to_tensor(inputs)
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 获取网络的权重
params = model.state_dict()
# 自定义Conv2D算子的bias参数形状为[out_channels, 1]
# paddle API中Conv2D算子的bias参数形状为[out_channels]
# 需要进行调整后才可以赋值
for key in params:
if 'bias' in key:
params[key] = params[key].squeeze()
# 创建Paddle_LeNet类的实例,指定模型名称和分类的类别数目
paddle_model = Paddle_LeNet(in_channels=1, num_classes=10)
# 将Model_LeNet的权重参数赋予给Paddle_LeNet模型,保持两者一致
paddle_model.set_state_dict(params)
# 打印结果保留小数点后6位
paddle.set_printoptions(6)
# 计算Model_LeNet的结果
output = model(x)
print('Model_LeNet output: ', output)
# 计算Paddle_LeNet的结果
paddle_output = paddle_model(x)
print('Paddle_LeNet output: ', paddle_output)
model = Paddle_LeNet(in_channels=1, num_classes=10)
params_info = paddle.summary(model, (1, 1, 32, 32))
print(params_info)
FLOPs = paddle.flops(model, (1, 1, 32, 32), print_detail=True)
print(FLOPs)
import paddle.optimizer as opt
from nndl import RunnerV3, metric
paddle.seed(100)
# 学习率大小
lr = 0.1
# 批次大小
batch_size = 64
# 加载数据
train_loader = io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = io.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = io.DataLoader(test_dataset, batch_size=batch_size)
# 定义LeNet网络
# 自定义算子实现的LeNet-5
model = Model_LeNet(in_channels=1, num_classes=10)
# 飞桨API实现的LeNet-5
# model = Paddle_LeNet(in_channels=1, num_classes=10)
# 定义优化器
optimizer = opt.SGD(learning_rate=lr, parameters=model.parameters())
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = metric.Accuracy(is_logist=True)
# 实例化 RunnerV3 类,并传入训练配置。
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=5, log_steps=log_steps,
eval_steps=eval_steps, save_path="best_model.pdparams")
from nndl import plot_training_loss_acc
plot_training_loss_acc(runner, 'cnn-loss1.pdf')
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
# 获取测试集中第一条数据
X, label = next(test_loader())
logits = runner.predict(X)
# 多分类,使用softmax计算预测概率
pred = F.softmax(logits)
# 获取概率最大的类别
pred_class = paddle.argmax(pred[1]).numpy()
label = label[1][0].numpy()
# 输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label[0], pred_class[0]))
# 可视化图片
plt.figure(figsize=(2, 2))
image, label = test_set[0][1], test_set[1][1]
image= np.array(image).astype('float32')
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
plt.imshow(image)
plt.savefig('cnn-number2.pdf')生成该实验思维导图方案设计
1. 数据准备:加载MNIST数据集,并进行预处理(调整大小、归一化)。
2. 构建LeNet-5模型:使用PaddlePaddle的nn.Layer构建模型。
3. 模型训练:使用训练集训练模型,使用验证集选择最佳模型。
4. 模型评估:在测试集上评估模型性能。
5. 可视化:展示训练过程中的损失和准确率变化,并可视化测试结果
关键步骤:
1. 数据预处理:
加载压缩的MNIST数据集(mnist.json.gz)
调整图像尺寸至32×32,归一化像素值到[-1, 1]范围
划分训练集(1000样本)、验证集(200样本)、测试集(200样本)
2. 模型构建:
自定义LeNet-5(Model_LeNet):
2个卷积层(5×5核)+ 2个池化层(MaxPool/AvgPool)
2个全连接层(120→84→10输出)
Paddle官方LeNet-5(Paddle_LeNet):
使用paddle.nn内置API实现相同结构
3. 模型验证:
对比自定义与官方模型的运行速度(Model_LeNet更快)
检查权重一致性(调整bias维度后输出一致)
4. 模型训练:
优化器:SGD(学习率0.1)
损失函数:交叉熵损失(F.cross_entropy)
批次大小:64,训练轮次:5
评估指标:准确率(Accuracy)
5. 测试与可视化:
加载最优模型(best_model.pdparams)
测试集评估准确率/损失
可视化预测结果(如数字“2”的识别)