统计SQuAD的词汇得到word2id 并把词都转成id的python代码

本文介绍了一种从JSON文件中读取数据并进行词频统计的方法。通过对训练数据集的解析,提取了所有段落标题、上下文、问题及答案中的词汇,并统计了这些词汇出现的频率。此外,还展示了如何将文本转换为数值ID,以便于后续的机器学习应用。
import json
import collections

json_file = open("train-v1.1.json")
data = json.load(json_file)

all_words = []

for paragraphs_title in data["data"]:
    all_words.extend(paragraphs_title["title"].split())
    paragraphs = paragraphs_title["paragraphs"]
    for context_qas in paragraphs:
        all_words.extend(context_qas["context"].split())
        qas = context_qas["qas"]
        for answers_question in qas:
            answers = answers_question["answers"]
            all_words.extend(answers_question["question"].split())
            if len(answers)>1:
                print(answers)
            for answerstart_text in answers:
                all_words.extend(answerstart_text["text"].split())

counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))

data_vec = []
for paragraphs_title in data["data"]:
    title = paragraphs_title["title"]
    paragraphs = paragraphs_title["paragraphs"]
    paragraphs_title = []
    data_vec.append(paragraphs_title)
    for context_qas in paragraphs:
        paragraphs_vec = []
        paragraphs_title.append(paragraphs_vec)
        context_vec = []
        questions_answers = []
        paragraphs_vec.append(context_vec)
        paragraphs_vec.append(questions_answers)
        for word in context_qas["context"].split():
            context_vec.append(word_to_id[word])
        qas = context_qas["qas"]
        for answers_question in qas:
            question_answer = []
            questions_answers.append(question_answer)
            question_vec = []
            answer_vec = []
            question_answer.append(question_vec)
            question_answer.append(answer_vec)
            answers = answers_question["answers"]
            for word in answers[0]["text"].split():
                answer_vec.append(word_to_id[word])
            for word in answers_question["question"].split():
                question_vec.append(word_to_id[word])
print("!")

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值