KDnuggets热门深度学习工具排行:Pylearn2 居首,Caffe第三

部署运行你感兴趣的模型镜像

如今深度学习是AI和机器学习领域最热门的学习趋势。我们来审查为深度学习而开发的软件,包括Caffe,CUDA convnet,Deeplearning4j,Pylearn2,Theano和Torch。

深度学习是现在人工智能(ArtificialIntelligence)和机器学习(Machine Learning)最热门的的趋势,每天的报刊都在报道令人惊异的新成就,比如在IQ测试中超越了人类(doing better than humans on IQ test)。

2015 KDnuggets Software Poll中添加了一个深度学习工具的新类别,民意调查最流行的工具的结果显示如下。

  • Pylearn2 (55users)
  • Theano (50)
  • Caffe (29)
  • Torch (27)
  • Cuda-convnet(17)
  • Deeplearning4j(12)
  • Other DeepLearning Tools (106)

我没有使用过所有的工具,所以这是基于这些流行工具的主页和教程的简要概述。

Theano&Pylearn2:

Theano和Pylearn2都是在Montreal大学开发出来的,都是由YoshuaBengio带领的大部分来自于LISA的开发人员参与研发。Theano是一个Python库,你也可以把它看成一个数学表达式编译器。这对于从零开始生成算法是有益的。这里是Theano培训的一个直观的例子。

如果我们要使用标准算法,我们可以写Pylearn2插件作为Theano表达式,并且Theano会优化和稳定这个表达式。它包括多层感知器/RBM/Stacked Denoting Autoencoder/ ConvNets所需的所有的东西。这里是一个快速入门教程来引导您完成Pylearn2的一些基本思路的学习。

Caffe:

Caffe是由BerkeleyVision and Learning Center开发的,由贾扬清创建,Evan Shelhamer带领完成。它是一种C ++中ConvNets的快速的和可读的实现。如图所示在其官方页面上,Caffe使用一个单一的NVIDIA GPU K40与AlexNet可以每天处理超过60M的图像。它是一个可用于图像分类的工具包,不擅长其他的深度学习应用程序,如文字或语音。

Torch &OverFeat:

Lua Facebook AI是用Lua编写的,并且为 NYU,Facebook AI实验室和GoogleDeepMind Torch使用。它要求为机器学习算法提供一个类似于MATLAB的环境。为什么他们选择Lua/ LuaJIT而不是更流行的Python呢?他们在Torch7的说明中这样解释,“Lua容易和C结合,所以在几个小时内的工作中,任何C或C ++库都可以成为一个Lua库。”Lua是用纯ANSI C编写的,所以它可以很容易地编译任意目标。

OverFeat是一个在ImageNet数据集中使用Torch7训练的特征提取器,同样很容易入门。

Cuda:

毫无疑问,最近GPU加速了深度学习的研究。有关GPU的新闻尤其是NVIDIACUDA遍及互联网。Cuda-convnet/CuDNN支持所有主流软件,例如Caffe,Torch和Theano,都是容易实现的。

Deeplearning4j:

不像上述工具是作为一种研究工具,Deeplearning4j为在商业环境中使用而设计。正如其介绍,DL4J是一种“基于Java的,聚焦工业,商业支持的,分布式的深度学习框架。”

对比

这些工具似乎在速度和易用性方面表示出友好的竞争性。

Caffe的开发者说,“Caffe是最快的可用的convnet实现工具。”

Torch7被证明在大多数基准中比Theano要快,如Torch7指南中所示。

Soumith给出了所有开源实现的convnet基准


Caffe指南中列出了一些流行的深度学习工具的对照表。


有Reddit上有一个关于“最适合深度神经网络的框架”的讨论。 DL4J在其网站上也给出了DL4J vs. Torch vs. Theano vs. Caffe的比较。

原文链接Popular Deep Learning Tools – a review(翻译/王辉 责编/周建丁)



您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值