After robbing those houses on that street, the thief has found himself a new place for his thievery so that he will not get too much attention. This time, all houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, the security system for these houses remain the same as for those in the previous street.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
首先想到使用另外一个数组记录当前最高纪录是否包括了第一个House。在抢最后一家时,判断如果抢了第一家,则放弃最后一家。算法如下:
public class Solution {
/**
* @param nums: An array of non-negative integers.
* return: The maximum amount of money you can rob tonight
*/
public int houseRobber2(int[] nums) {
int[] res = new int[nums.length];
boolean[] includeFirst = new boolean[nums.length];
if(nums.length == 0) return 0;
if(nums.length == 1) return nums[0];
if(nums.length == 2) {
return Math.max(nums[0], nums[1]);
}
res[0] = nums[0];
res[1] = Math.max(nums[0], nums[1]);
includeFirst[0] = true;
includeFirst[1] = nums[0] > nums[1];
for(int i = 2; i < nums.length; i++) {
if(i == nums.length - 1) {
if(includeFirst[i - 2]) {
res[i] = Math.max(res[i - 1], nums[i]);
} else {
res[i] = Math.max(res[i - 2] + nums[i], res[i - 1]);
}
} else {
res[i] = Math.max(res[i - 2] + nums[i], res[i - 1]);
includeFirst[i] = res[i - 2] + nums[i] > res[i - 1] ?
includeFirst[i - 2] : includeFirst[i - 1];
}
}
return res[nums.length - 1];
}
}
但是这个算法忽略了一种情况,即最佳方案必须包括最后一个House。极端情况可以假设最后一个House为正无穷。如果不算入最后一个House,其他方案都不是最佳的。 第二种算法,分别调用两次House Robber I的算法,第一次包含第一个House,不包括最后一个。第二次反之。求Max
public class Solution {
public int rob(int[] nums) {
if(nums==null || nums.length==0) return 0;
if(nums.length==1) return nums[0];
if(nums.length==2) return Math.max(nums[0], nums[1]);
return Math.max(robsub(nums, 0, nums.length-2), robsub(nums, 1, nums.length-1));
}
private int robsub(int[] nums, int s, int e) {
int n = e - s + 1;
int[] d =new int[n];
d[0] = nums[s];
d[1] = Math.max(nums[s], nums[s+1]);
for(int i=2; i<n; i++) {
d[i] = Math.max(d[i-2]+nums[s+i], d[i-1]);
}
return d[n-1];
}
}