题目大意:给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大。
这两段只有两种情况:1表示选的数,0表示没选
(1)没形成环000111000111000
(2)成环111000111000111
第(1)种情况:从两边开始维护在以i结束的子段中,取某连续子段和的最大值,然后枚举终点:maxsum = max(maxsum, maxdp[i]+maxdp_[i+1]),答案:maxsum
第(2)种情况:从两边开始维护在以i结束的子段中,取某连续子段和的最小值,然后枚举终点minsum = min(minsum, mindp[i]+mindp_[i+1]),答案:sum - minsum
最终答案就为:ans = max(maxsum, sum-minsum)。
!!!特殊情况:当序列全为负数时,sum == minsum,即sum - minsum == 0,而maxsum < 0,所以答案算得为0。错误!!
为了解决特殊情况,加一句:if(sum == minsum) ans = maxsum;
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 200010;
const int INF = 2147483640;
int n, a[maxn];
int maxdp[maxn], mindp[maxn];//在区间1~i取某连续子段得到的最大/小值
int maxdp_[maxn], mindp_[maxn];//在区间i~n取某连续子段得到的最大/小值
int main()
{
int i;
scanf("%d", &n);
int sum = 0, maxsum = -INF, minsum = INF;
for(i = 1; i <= n; ++i)
{
scanf("%d", &a[i]);
sum += a[i];
}
maxdp[1] = mindp[1] = a[1];
maxdp_[n] = mindp_[n] = a[n];
for(i = 2; i <= n; ++i)//先求出在区间1~i中以i结尾的连续子段的最值
{
maxdp[i] = max(a[i], maxdp[i-1]+a[i]);
mindp[i] = min(a[i], mindp[i-1]+a[i]);
}
for(i = 2; i <= n; ++i)//在迭代出在区间1~i取某连续子段得到的最值
{
maxdp[i] = max(maxdp[i], maxdp[i-1]);
mindp[i] = min(mindp[i], mindp[i-1]);
}
for(i = n-1; i >= 1; --i)//同理
{
maxdp_[i] = max(a[i], a[i]+maxdp_[i+1]);
mindp_[i] = min(a[i], a[i]+mindp_[i+1]);
}
for(i = n-1; i >=1 ; --i)//同理
{
maxdp_[i] = max(maxdp_[i], maxdp_[i+1]);
mindp_[i] = min(mindp_[i], mindp_[i+1]);
}
for(i = 1; i <= n-1; ++i)
{
maxsum = max(maxsum, maxdp[i]+maxdp_[i+1]);
minsum = min(minsum, mindp[i]+mindp_[i+1]);
}
int ans = max(maxsum, sum-minsum);
if(sum == minsum) ans = maxsum;//特殊情况全为负数
printf("%d\n", ans);
return 0;
}