关键是找源点和边
因为点1也需要与其他点连成的边松弛,所以源点不为1
可以假想一个0点作为源点,而1~n点的“点权”可看作源点到各点的初始路径
而优惠条件可看作条件物品到被优惠物品的一条边
则该问题就转化为源点0到各点的最短路径,并且输出dis[1]
PS:边权edge[][]最好不要初始化为INF,防止进行松弛条件判定时,数据越界
可以根据题目要求来自己设置边有无的情况,本题将无边的情况初始化为-1
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 2147483640;
const int maxn = 110;
int m, n, level[maxn];
int dis[maxn], edge[maxn][maxn];
bool vis[maxn];
int dijkstra();
int main()
{
int i, j, k, t, p;
scanf("%d %d", &m, &n);
int ans = INF;
memset(vis, 0, sizeof(vis));
memset(edge, -1, sizeof(edge));//不初始化为INF,防止dijkstra时越界
for(i = 1; i <= n; ++i)
{
scanf("%d %d %d", &edge[0][i], &level[i], &k);
for(j = 1; j <= k; ++j)
{
scanf("%d %d", &t, &p);
edge[t][i] = p;
}
}
for(i = 1; i <= n; ++i)//限制的点vis[]赋为1
{
int now = level[i];
for(j = 1; j <= n; ++j)
{
if(level[j] > now || now > level[j] + m)
vis[j] = 1;
else vis[j] = 0;
}
int ret = dijkstra();
if(ret < ans) ans = ret;
}
printf("%d\n", ans);
return 0;
}
int dijkstra()
{
int i, j;
for(i = 1; i <= n; ++i) dis[i] = edge[0][i];
for(i = 1; i <= n; ++i)
{
int p = 0, minn = INF;
for(j = 1; j <= n; ++j)
if(!vis[j] && dis[j] < minn)
minn = dis[p = j];
vis[p] = 1;
if(p == 0) return dis[1];
for(j = 1; j <= n; ++j)
{
if(vis[j]) continue;
if(~edge[p][j] && dis[p] + edge[p][j] < dis[j])
dis[j] = dis[p] + edge[p][j];
}
}
return dis[1];
}