Spark Streaming+Flume对接实验(推送)
软件环境:
flume-ng-core-1.4.0-cdh5.0.0
spark-1.2.0-bin-hadoop2.3
流程说明:
- Spark Streaming: 使用spark-streaming-flume_2.10-1.2.0插件,启动一个avro source,用来接收数据,并做相应的处理;
- Flume agent:source监控本地文件系统的一个目录,当文件发生变化时候,由avro sink发送至Spark Streaming的监听端口
Flume配置:
flume-lxw-conf.properties
- #-->设置sources名称
- agent_lxw.sources = sources1
- #--> 设置channel名称
- agent_lxw.channels = fileChannel
- #--> 设置sink 名称
- agent_lxw.sinks = sink1
- # source 配置
- ## 一个自定义的Source,实现类似tail -f 的功能,比exec source更可靠
- agent_lxw.sources.sources1.type = org.apache.flume.source.taildirectory.DirectoryTailSource
- agent_lxw.sources.sources1.dirs = lxwlog
- ## 监控的目录
- agent_lxw.sources.sources1.dirs.lxwlog.path = file:///tmp/lxw-source
- #监控文件的正则规则,此正则用java的正则
- agent_lxw.sources.sources1.dirs.lxwlog.file-pattern = ^lxw_.*log$
- agent_lxw.sources.sources1.first-line-pattern = ^(.*)$
- agent_lxw.sources.sources1.channels = fileChannel
- # sink 1 配置 将数据发送至slave004.lxw1234.com的44444端口
- agent_lxw.sinks.sink1.type = avro
- agent_lxw.sinks.sink1.hostname = slave004.lxw1234.com
- agent_lxw.sinks.sink1.port = 44444
- agent_lxw.sinks.sink1.channel = fileChannel
- agent_lxw.sinks.sink1.batch-size = 500
- agent_lxw.sinks.sink1.connect-timeout = 40000
- agent_lxw.sinks.sink1.request-timeout = 40000
- agent_lxw.channels.fileChannel.type = file
- #-->检测点文件所存储的目录
- agent_lxw.channels.fileChannel.checkpointDir = /tmp/flume/checkpoint/site
- #-->数据存储所在的目录设置
- agent_lxw.channels.fileChannel.dataDirs = /tmp/flume/data/site
- #-->隧道的最大容量
- agent_lxw.channels.fileChannel.capacity = 10000
- #-->事务容量的最大值设置
- agent_lxw.channels.fileChannel.transactionCapacity = 100
Spark Streaming程序:
Spark_Flume.scala
- package com.lxw.test
- import org.apache.spark.SparkConf
- import org.apache.spark.SparkContext
- import org.apache.spark.storage.StorageLevel
- import org.apache.spark.streaming.Seconds
- import org.apache.spark.streaming.StreamingContext
- import org.apache.spark.streaming.flume.FlumeUtils
- object Spark_Flume {
- def main (args : Array[String]) {
- if(args.length < 2) {
- println("Usage: Spark_Flume <hostname> <port>")
- System.exit(1)
- }
- val hostname = args(0)
- val port = Integer.parseInt(args(1))
- val sc = new SparkContext(new SparkConf().setAppName("Spark_Flume"))
- val ssc = new StreamingContext(sc, Seconds(10))
- val flumeStream = FlumeUtils.createStream(ssc, hostname, port,StorageLevel.MEMORY_AND_DISK)
- flumeStream.map(e => "Event:header:" + e.event.get(0).toString + "body: " + new String(e.event.getBody.array)).print()
- ssc.start()
- ssc.awaitTermination()
- }
- }
启动:
- 先启动Spark Streaming程序:
- ./spark-submit \
- --name "spark-flume" \
- --master spark://192.168.1.130:7077 \
- --executor-memory 1G \
- --class com.lxw.test.Spark_Flume \
- /home/liuxiaowen/spark-flume.jar slave004.lxw1234.com 44444
- 再启动Flume agent:
- flume-ng agent -n agent_lxw --conf . -f flume-lxw-conf.properties
效果示例:
命令行往文件中增加数据

Spark and Flume
Flume监听到文件变化

Spark and Flume
Spark Streaming接收并处理数据

Spark and Flume
注意事项:
- Spark集群已经部署好,采用Standalone模式;
- Spark集群中每台节点需要将spark-streaming-flume_2.10-1.2.0.jar和flume-avro-source-1.4.0-cdh5.0.0.jar添加至SPARK_CLASSPATH中;
- Spark_Flume.scala在编译时候依赖:spark-assembly-1.2.0-hadoop2.3.0.jar、spark-streaming-flume_2.10-1.2.0.jar、flume-avro-source-1.4.0-cdh5.0.0.jar、flume-ng-sdk-1.4.0-cdh5.0.0.jar;
- 启动Spark Streaming时候传入的hostname (slave004.lxw1234.com),必须是Spark集群中的一台节点,Spark会在这台机器上启动NettyServer;