基于Kafka的实时计算引擎如何选择?

本文探讨了基于Kafka的实时计算引擎选择,重点关注Apache Flink和Apache Spark。文章介绍了实时计算的需求背景,解释了流式处理的概念及其适用场景。接着详细对比了Spark的微批处理和连续流处理,以及Flink的实时计算优势,如低延时、窗口和事件时间处理。通过对比,帮助读者理解两者在实际项目中的适用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言

目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟。以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象。那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark?

2.为何需要实时计算?

根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备、传感器以及技术的出现,数据增长率也会为此加速。而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性。例如移动应用广告、欺诈检测、出租车预订、患者监控等场景处理时,需要对实时数据进行实时处理,以便做出快速可行的决策。

目前业界有开源不少实时计算引擎,以Apache基金会的两款开源实时计算引擎最受欢迎,它们分别是Apache Flink和Apache Spark。接下来,我们来聊一聊它们的使用场景、优势、局限性、相似性、以及差异性。方便大家在做技术选型时,选择切合项目场景的实时计算引擎。

2.1 如何理解流式与实时?

说起实时计算,可能会说到流式计算,那么流式和实时是否是等价的呢?严格意义上讲,它们没有必然的联系。实时计算代表的是处理数据耗时情况,而流式计算代表的是处理数据的一种方式。

2.2 什么是流式处理?

首先,它是一种数据处理引擎,其设计时考虑了无边界的数据集。其次,它与批处理不同,批处理的Job与数据的起点和终点有关系,并且Job在处理完有限数据后结束,而流式处理用于处理连续数天、数月、数年、或是永久实时的无界数据。

流处理的特点:

  • 容错性:如果节点出现故障,流式处理系统应该能够恢复,并且应该从它离开的位置再次开始处理;
  • 状态管理:在有状态处理要求的情况下,流式处理系统应该能够提供一些机制来保存和更新状态信息;
  • 性能:延时应尽可能的小,吞吐量应尽可能的大;
  • 高级功能:事件时间处理,窗口等功能,这些均是流式处理在处理复杂需求时所需要的功能;

2.3 什么时候适合流式处理?

流式处理可以分析连续的数据流,在这种方式中,数据被视为连续流,处理引擎在很短的时间内(几毫米到几分钟)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值