hadoop 2.3.0 wordcount

本文介绍了如何使用Maven构建一个Hadoop示例项目,并详细说明了创建类、配置Maven依赖、安装jar包、上传至Hadoop环境、创建文本文件、执行WordCount任务及查看结果的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新建maven项目

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>hadoop2.3</groupId>
<artifactId>example</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>hadoop示例</name>


<properties>
<hadoop-version>2.3.0</hadoop-version>
</properties>

<dependencies>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.2.1</version>
</dependency>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-app</artifactId>
<version>${hadoop-version}</version>
</dependency>

<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version>1.6</version>
<scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-examples</artifactId>
<version>${hadoop-version}</version>
</dependency>


</dependencies>
</project>


2、新建类

/**
*
*/
package com.xxx.example;


import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class MyWordcount {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(MyWordcount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}




3、maven install
生成jar
example-0.0.1-SNAPSHOT.jar

4、上传到hadoop_home目录


5、创建word.txt
mkdir input

vi input/word.txt
输入文字

保存

6、执行
bin/hadoop jar example-0.0.1-SNAPSHOT.jar com.xxx.example.MyWordcount file:///data01/javaapp/hadoop-2.3.0/input/word.txt output


7、查看结果
http://192.168.1.22:50070/explorer.html

或者

bin/hadoop fs -ls -R output

bin/hadoop fs -cat output/part-**

8、删除执行结果

bin/hadoop fs -rm -r output*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值