输入一个包含n个方程n个未知数的线性方程组。
方程组中的系数为实数。
求解这个方程组。
输入格式
第一行包含整数n。
接下来n行,每行包含n+1个实数,表示一个方程的n个系数以及等号右侧的常数。
输出格式
如果给定线性方程组存在唯一解,则输出共n行,其中第i行输出第i个未知数的解,结果保留两位小数。
如果给定线性方程组存在无数解,则输出“Infinite group solutions”。
如果给定线性方程组无解,则输出“No solution”。
数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过100。
输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00
算法步骤
枚
举每一列c,
1.找到当前列绝对值最大的一行
2.用初等行变换(2) 把这一行换到最上面(未确定阶梯型的行,并不是第一行)
3.用初等行变换(1) 将该行的第一个数变成 11 (其余所有的数字依次跟着变化)
4.用初等行变换(3) 将下面所有行的当且列的值变成 0
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 110;
const double eps = 1e-6;
int n;
double a[N][N];
int gauss()
{
int c, r;// c 代表 列 col , r 代表 行 row
for (c = 0, r = 0; c < n; c ++ )
{
int t = r;// 先找到当前这一列,绝对值最大的一个数字所在的行号
for (int i = r; i < n; i ++ )
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;
if (fabs(a[t][c]) < eps) continue;// 如果当前这一列的最大数都是 0 ,那么所有数都是 0,就没必要去算了,因为它的约束方程,可能在上面几行
for (int i = c; i < n + 1; i ++ ) swap(a[t][i], a[r][i]);//// 把当前这一行,换到最上面(不是第一行,是第 r 行)去
for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];// 把当前这一行的第一个数,变成 1, 方程两边同时除以 第一个数,必须要到着算,不然第一个数直接变1,系数就被篡改,后面的数字没法算
for (int i = r + 1; i < n; i ++ )// 把当前列下面的所有数,全部消成 0
if (fabs(a[i][c]) > eps)// 如果非0 再操作,已经是 0就没必要操作了
for (int j = n; j >= c; j -- )// 从后往前,当前行的每个数字,都减去对应列 * 行首非0的数字,这样就能保证第一个数字是 a[i][0] -= 1*a[i][0];
a[i][j] -= a[r][j] * a[i][c];
r ++ ;// 这一行的工作做完,换下一行
}
if (r < n)// 说明剩下方程的个数是小于 n 的,说明不是唯一解,判断是无解还是无穷多解
{// 因为已经是阶梯型,所以 r ~ n-1 的值应该都为 0
for (int i = r; i < n; i ++ )//
if (fabs(a[i][n]) > eps)// a[i][n] 代表 b_i ,即 左边=0,右边=b_i,0 != b_i, 所以无解。
return 2;
return 1;// 否则, 0 = 0,就是r ~ n-1的方程都是多余方程
}
// 唯一解 ↓,从下往上回代,得到方程的解
for (int i = n - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )
a[i][n] -= a[j][n] * a[i][j];//因为只要得到解,所以只用对 b_i 进行操作,中间的值,可以不用操作,因为不用输出
return 0;
}
int main()
{
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n + 1; j ++ )
cin >> a[i][j];
int t = gauss();
if (t == 0)
{
for (int i = 0; i < n; i ++ ) printf("%.2lf\n", a[i][n]);
}
else if (t == 1) puts("Infinite group solutions");
else puts("No solution");
return 0;
}
该博客介绍了如何运用高斯消元法来求解包含n个方程和n个未知数的线性方程组。文章详细阐述了算法步骤,包括寻找列最大值、进行初等行变换,以达到解出方程组的目的。并提供了输入输出格式及数据范围的说明,以及一个具体的输入样例和相应的输出结果。
238

被折叠的 条评论
为什么被折叠?



