HDFS - HBSE -MR

本文介绍了如何使用Hadoop的MapReduce框架将HDFS中的数据批量导入HBase,包括Mapper和Reducer的实现,以及配置细节。重点在于HDFS到HBase的数据转换和批量写入过程。

HDFS - HBASE

package com.ws.hbaseMr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import java.io.IOException;

public class Hdfs2Hbase {

    public static class M extends Mapper<LongWritable, Text,Text,IntWritable>{
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] split = value.toString().split(",");
            for (String s : split) {
                context.write(new Text(s),new IntWritable(1));
            }
        }
    }

    public static class R extends TableReducer<Text,IntWritable, ImmutableBytesWritable>{
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            Put put = new Put(key.getBytes());
            int i=0;
            for (IntWritable value : values) {
                i+=value.get();
            }
            put.addColumn("f".getBytes(),"n".getBytes(),(i+"").getBytes());
            context.write(null,put);
        }
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        conf.set("hbase.zookeeper.quorum","dream1:2181,dream2:2181");
        Job job = Job.getInstance(conf);

        job.setJarByClass(Hdfs2Hbase.class);
        job.setMapperClass(M.class);
        job.setReducerClass(R.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        FileInputFormat.setInputPaths(job,new Path("hdfs://dream1:9000/hd2hb/input"));

        TableMapReduceUtil.initTableReducerJob("hd2hb",R.class,job);

        job.waitForCompletion(true);

    }
}

HBASE-HDFS

package com.ws.hbaseMr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.util.Collections;

public class HBase2Hdfs {

    public static class M extends TableMapper<Text,IntWritable> {
        @Override
        protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
            byte[] value1 = value.getValue("f".getBytes(), "n".getBytes());
            byte[] bytes = key.get();
            context.write(new Text(new String(bytes)),new IntWritable(Integer.parseInt(new String(value1))));
        }
    }

    public static class R extends Reducer<Text,IntWritable,Text,IntWritable> {
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            for (IntWritable value : values) {
                context.write(key,value);
            }
        }
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        conf.set("hbase.zookeeper.quorum","dream1:2181,dream2:2181");
        System.setProperty("HADOOP_USER_NAME","root");
        Job job = Job.getInstance(conf);
        job.setJarByClass(HBase2Hdfs.class);
        job.setReducerClass(R.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        Scan scan = new Scan();
        TableMapReduceUtil.initTableMapperJob("hd2hb",scan,M.class,Text.class,IntWritable.class,job);

        FileOutputFormat.setOutputPath(job,new Path("hdfs://dream1:9000/hd2hb/out"));
        job.waitForCompletion(true);
    }
}

HBASE-MR-HBASE

 

package com.ws.hbaseMr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class HBase2HBaseMr {

    public static class M extends TableMapper<Text,IntWritable> {
        @Override
        protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
            byte[] value1 = value.getValue("f".getBytes(), "n".getBytes());
            byte[] bytes = key.get();
            context.write(new Text(new String(bytes)),new IntWritable(Integer.parseInt(new String(value1))));
        }
    }

    public static class R extends TableReducer<Text,IntWritable,ImmutableBytesWritable> {
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            Put put = new Put((values.iterator().next().get()+"").getBytes());
            put.addColumn("f".getBytes(),"n".getBytes(),key.getBytes());
            context.write(null,put);
        }
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        conf.set("hbase.zookeeper.quorum","dream1:2181,dream2:2181");
        Job job = Job.getInstance(conf);
        job.setJarByClass(HBase2HBaseMr.class);
        Scan scan = new Scan();
        TableMapReduceUtil.initTableMapperJob("hd2hb",scan,M.class,Text.class,IntWritable.class,job);
        TableMapReduceUtil.initTableReducerJob("hb2hb",R.class,job);

        job.waitForCompletion(true);
    }
}

 

【无人机】基于改进粒子群算法的无人机路径规划研究[遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值