实现二叉查找树的查找、插入、最大值、最小值、删除
/**
* 二叉查找树:
* 1.若任意节点的左子树不为空,则左子树的所有的节点值均小于根节点的值;
* 2.若任意节点的右子树不为空,则右子树上所有节点的值均大于它的根节点的值;
* 3.任意节点的左右子树也分别为二叉查找树;
* 4.!!!! 没有键值相等的节点;
*/
public class Binary_Search_Tree {
//查找,插入、删除,最大值、最小值、删除
/**
* 查找二叉树root中键值为key的节点
* 1.root == null,返回null
* 2.root不为null,比较root的键值和key
* 3.root.key > key; 在左子树中查找 --- 递归
* 4.root.key < key ,在右子树中查找 --- 递归
*
*/
public static BsNode search(BsNode root, int key) {
if (root != null) {
if (key < root.key) {
return search(root.left, key); // 递归查找左子树
}else if (key > root.key) {
return search(root.right, key);
}else {
return root;
}
}
return null;
}
/**
* 查找二叉查找树root的最大值
* 1. root为null,返回null
* 2. root不为null:
* 2.1 root.right为null,返回root
* 2.2 root.right不为null,递归查询root的右子树
*/
public static BsNode searchMaxKey(BsNode root) {
if (root != null) {
if (root.right == null) {
return root;
}else {
return searchMaxKey(root.right);
}
}
return null;
}
/**
* 查找二叉查找树root的最小值
* 1. root为null,返回null;
* 2.root 不为null;
* 2.1 root的左子树为空,返回root
* 2.2 root的左子树不为空,递归查询root的左子树
*/
public static BsNode searchMin(BsNode root) {
if (root != null) {
if (root.left == null) {
return root;
}else {
return searchMin(root.left);
}
}
return null;
}
/**
* 插入节点
* 1. 如果二叉查找树为空,根节点的key为data
* 2.二叉查找树不为空:
* 2.1 比较data与root的键值
* 2.2 若大于,则判断右子树是否为空,如为空,插入,不为空,继续执行2.1 -- 递归
* 2.2 若小于,判断左子树是否为空,为空,插入,不为空,继续执行2.1 -- 递归
* 2.3若相等,return;
*/
public static void insert(BsNode root, int data) {
if (root == null) {
root = new BsNode(data);
}
if (data < root.key) {
if (root.left == null) {
root.left = new BsNode(data);
}else {
insert(root.left, data);
}
}else if (data > root.key) {
if (root.right == null) {
root.right = new BsNode(data);
}else {
insert(root.right, data);
}
}else {
return;
}
}
/**
* 删除
* 1. 被删除节点没有子节点,即为叶子节点:直接删除,父节点对应的子节点置空
* 2. 被删除节点的左子树或者右子树为空,删除该节点,让其父节点关联其子节点;
* 3. 左右子树都不为空:把该节点的直接前驱(该节点左子树中的最大节点)或者直接后继节点(该节点右子树中的最小节点)替换该节点,删除直接前驱节点或者直接后继节点
* @return 返回根节点
*/
public static BsNode delete(BsNode root, int data) {
if (root == null) {
return null;
}
BsNode node = search(root, data);
return deletePro(root, node);
}
public static BsNode deletePro(BsNode root,BsNode node) {
//情况一:
if (node.left == null && node.right == null) {
if (node == root) {//被删除节点为根节点
root = null;
}else {
if (node.parent.left == node) {
node.parent.left = null;
}else {
node.parent.right = null;
}
}
}else if (node.left == null) { //情况二
if (node == root) { //被删除节点为根节点
root = root.right;
root.parent = null;
}else {
if (node.parent.left == node) { //该节点是其父节点的左节点
node.parent.left = node.right;
}else { //该节点是其父节点的右节点
node.parent.right = node.right;
}
node.right.parent = node.parent;
}
}else if (node.right == null) { //情况二
if (node == root) { //被删除节点为根节点
root = root.left;
root.parent = null;
}else {
if (node.parent.left == node) {
node.parent.left = node.left;
}else {
node.parent.right = node.left;
}
node.left.parent = node.parent;
}
}else { //情况三
BsNode preNode =null;
if (node == root) {
preNode = searchMaxKey(root.left);// 获取前驱节点
root.key = preNode.key;
}else {
preNode = searchMaxKey(node.left);// 获取前驱节点
node.key = preNode.key;
}
//删除前驱节点
deletePro(root, preNode);
}
return root;
}
/**
* 层次遍历
*
*/
public static void LevelTree(BsNode root) {
if (root == null) {
return;
}
Queue<BsNode> queue = new ArrayDeque<BsNode>();
queue.add(root);
while(!queue.isEmpty()) {
BsNode node = queue.poll();//获取队首元素,并从队列中删除
System.out.println(node.key);
if (node.left != null) {
queue.add(node.left); //左节点入队
}
if (node.right != null) {
queue.add(node.right); //右节点入队
}
}
}
//测试
public static void main(String[] args) {
//创建一颗二叉树 9(5(2,7),13(12(10),14))
/*BsNode root = new BsNode(9);
BsNode node1 = new BsNode(5);BsNode node2 = new BsNode(13);
root.left = node1; root.right = node2;
BsNode node1_1 = new BsNode(2); BsNode node1_2 = new BsNode(7);
node1.left = node1_1; node1.right = node1_2;
BsNode node2_1 = new BsNode(12); BsNode node2_2 = new BsNode(14);
node2.left=node2_1; node2.right=node2_2;
BsNode node2_1_1 = new BsNode(10);
node2_1.left = node2_1_1;
int key = 12;
BsNode bsNode = search(root,key);
System.out.println("key为"+key+"节点存在否: "+ ((bsNode !=null)?"存在":"不存在"));
System.out.println("二叉树的最大key值:"+searchMaxKey(root).key);
System.out.println("二叉树的最小key值:"+searchMin(root).key);
insert(root, 11);
System.out.println("插入节点后的中序遍历");
LDR(root);*/
//叶子节点
BsNode node1 = new BsNode(6, null, null); BsNode node2 = new BsNode(8, null, null);
BsNode node3 = new BsNode(10, null, null); BsNode node4 = new BsNode(14, null, null);
BsNode node5 = new BsNode(7, node1, node2);
BsNode node6 = new BsNode(12, node3, null);
BsNode node7 = new BsNode(13, node6, node4);
BsNode node8 = new BsNode(5, null, node5);
BsNode root = new BsNode(9, node8, node7);
node1.parent = node5; node2.parent = node5;
node3.parent = node6; node4.parent = node7;
node5.parent = node8; node6.parent = node7;
node7.parent = root; node8.parent = root;
//LevelTree(root);
delete(root, 9);
//delete(root, 13);
//delete(root, 8);
//delete(root, 12);
//delete(root, 5);
System.out.println("删除节点后");
//LDR(root);
LevelTree(root);
}
}
class BsNode{
//三叉节点
int key;
BsNode left;
BsNode right;
BsNode parent;
public BsNode(int key, BsNode left, BsNode right, BsNode parent) {
super();
this.key = key;
this.left = left;
this.right = right;
this.parent = parent;
}
public BsNode(int key, BsNode left, BsNode right) {
super();
this.key = key;
this.left = left;
this.right = right;
}
public BsNode(int key) {
super();
this.key = key;
}
}