YOLOv10改进 | 注意力机制 | 添加iRMB倒置残差块注意力机制(轻量化注意力机制)

 一、本文介绍

本文给家大家带来的改进机制是iRMB,其是在论文Rethinking Mobile Block for Efficient Attention-based Models种提出,论文提出了一个新的主干网络EMO(后面我也会教大家如何使用该主干,本文先教大家使用该文中提出的注意力机制)其主要思想是将轻量级的CNN架构与基于注意力的模型结构相结合(有点类似ACmix),我将iRMB和C2f结合,然后也将其用在了检测头种进行尝试三种结果进行对比,针对的作用也不相同,但是无论那种实验均有一定涨点效果,同时该注意力机制属于是比较轻量化的参数量比较小,训练速度也很快,后面我会将各种添加方法教给大家,让大家在自己的模型中进行复现。

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、iRMB的框架原理

2.1 iRMB结构

2.2 倒置残差块

2.3 元移动块(Meta-Mobile Block)

三、iRMB的核心代码 

四、手把手教你添加iRMB和C2f_iRMB机制 

4.1 步骤一

4.2 步骤二

4.3 步骤三

五、iRMB和C2f_iRMB的yaml文件和运行记录

5.1 yaml版本一(推荐)

5.2 yaml版本二<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值