YOLOv10改进 | 主干/Backbone篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN

 一、本文介绍

本文给大家来的改进机制是RepViT,用其替换我们整个主干网络,其是今年最新推出的主干网络,其主要思想是将轻量级视觉变换器(ViT)的设计原则应用于传统的轻量级卷积神经网络(CNN)。我将其替换整个YOLOv10的Backbone,实现了大幅度涨点。我对修改后的网络(我用的最轻量的版本),在一个包含1000张图片包含大中小的检测目标的数据集上(共有20+类别),进行训练测试,发现所有的目标上均有一定程度的涨点效果,下面我会附上基础版本和修改版本的训练对比图。

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、RepViT基本原理

三、RepViT的核心代码 

四、手把手教你添加RepViT网络结构

修改一

修改二

修改三 

修改四

修改五 

修改六 

 修改七

修改八

五、RepViT的yaml文件

六、成功运行记录 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值