YOLOv10改进 | Conv篇 | SAConv可切换空洞卷积(附修改后的C2f+Bottleneck)

 一、本文介绍

本文给大家带来的改进机制是可切换的空洞卷积(Switchable Atrous Convolution, SAC)是一种创新的卷积网络机制,专为增强物体检测和分割任务中的特征提取而设计。SAC的核心思想是在相同的输入特征上应用不同的空洞率进行卷积,并通过特别设计的开关函数来融合这些不同卷积的结果。这种方法使得网络能够更灵活地适应不同尺度的特征,从而更准确地识别和分割图像中的物体。 通过本文你能够了解到:可切换的空洞卷积的基本原理和框架,能够在你自己的网络结构中进行添加(值得一提的是一个SAConv大概可以降低0.3GFLOPs)

  专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、SAConv的机制原理介绍

三、SAConv代码复现 

四、手把手教你添加SAConv 

4.1 SAConv的添加教程

4.1.1 修改一

4.1.2 修改二 

4.1.3 修改三 

4.1.4 修改四 

4.2 SAConv的yaml文件和训练截图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值