HRNet-v1模型详解
源码参考:https://github.com/HRNet/HRNet-Human-Pose-Estimation
内容参考:点击跳转
仅作为个人的学习笔记,欢迎交流学习。
整体结构如下图
整体代码详解:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import torch
import torch.nn as nn
BN_MOMENTUM = 0.1
logger = logging.getLogger(__name__)
# 定义3x3卷积操作
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,padding=1, bias=False)
# 3x3的残差块
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion,
momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# 高分辨率模块
class HighResolutionModule(nn.Module):
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
num_channels, fuse_method, multi_scale_output=True):
super(HighResolutionModule, self).__init__()
"""
:param num_branches: 当前 stage 分支平行子网络的数目
:param blocks: BasicBlock或者BasicBlock
:param num_blocks: BasicBlock或者BasicBlock的数目
:param num_inchannels: 输入通道数
当stage = 2时: num_inchannels = [32, 64]
当stage = 3时: num_inchannels = [32, 64, 128]
当stage = 4时: num_inchannels = [32, 64, 128, 256]
:param num_channels: 输出通道数目
当stage = 2时: num_inchannels = [32, 64]
当stage = 3时: num_inchannels = [32, 64, 128]
当stage = 4时: num_inchannels = [32, 64, 128, 256]
:param fuse_method: 默认SUM
:param multi_scale_output:
当stage = 2时: multi_scale_output=Ture
当stage = 3时: multi_scale_output=Ture
当stage = 4时: multi_scale_output=False
"""
self._check_branches(
num_branches, blocks, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.multi_scale_output = multi_scale_output
# 为每个分支构建分支网络
# 当stage=2,3,4时,num_branches分别为:2,3,4,表示每个stage平行网络的数目
# 当stage=2,3,4时,num_blocks分别为:[4,4], [4,4,4], [4,4,4,4],
self.branches = self._make_branches(
num_branches, blocks, num_blocks, num_channels)
# 创建一个多尺度融合层,当stage=2,3,4时
# len(self.fuse_layers)分别为2,3,4. 其与num_branches在每个stage的数目是一致的
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(True)
# 检查num_branches num_blocks num_inchannels num_channels 长度是否一致
def _check_branches(self, num_branches, blocks, num_blocks,
num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels))
logger.error(error_msg)
raise ValueError(error_msg)
# 搭建分支,单个分支内部分辨率相等
# for i in range(num_branches): 2 3 4
# self._make_one_branch(i, block, num_blocks, num_channels)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
stride=1):
downsample = None
# 如果stride不为1, 或者输入通道数目与输出通道数目不一致
# 则通过卷积,对其通道数进行改变
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False
),
nn.BatchNorm2d(
num_channels[branch_index] * block.expansion,
momentum=BN_MOMENTUM
),
)
layers = []
# 为当前分支branch_index创建一个block,该处进行下采样
layers.append(
block(
self.num_inchannels[branch_index],
num_channels[branch_index],
stride,
downsample
)
)
# 把输出通道数,赋值给输入通道数,为下一stage作准备
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
# 为[1, num_blocks[branch_index]]分支创建block
for i in range(1, num_blocks[branch_index]):
layers.append(
block(
self.num_inchannels[branch_index],
num_channels[branch_index]
)
)
return nn.Sequential(*layers)
# 循环调用 make_one_branch创建多个分支
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
# 循环为每个分支构建网络
# 当stage=2,3,4时,num_branches分别为:2,3,4,表示每个stage平行网络的数目
# stage=2时, self._make_one_branch(0, BASICBLOCK, [4,4], [32,64]) ,s