前面使用线性神经网络softmax 和 多层感知机进行图像分类,本次我们使用LeNet 卷积神经网络进行
训练,期望能捕捉到图像中的图像结构信息,提高识别精度:
import torch
import torchvision
from torchvision import transforms
from torch.utils import data
import time
from torch import nn
from matplotlib import pyplot as plt
from matplotlib_inline import backend_inline
from IPython import display
size = lambda x, *args, **kwargs: x.numel(*args, **kwargs)
reduce_sum = lambda x, *args, **kwargs: x.sum(*args, **kwargs)
argmax = lambda x, *args, **kwargs: x.argmax(*args, **kwargs)
astype = lambda x, *args, **kwargs: x.type(*args, **kwargs)
class Timer:
"""记录多次运行时间"""
def __init__(self):
"""Defined in :numref:`subsec_linear_model`"""
self.times = []
self.start()
def start(self):
"""启动计时器"""
self.tik = time.time()
def stop(self):
"""停止计时器并将时间记录在列表中"""
self.times.append(time.time() - self.tik)
return self.times[-1]
def avg(self):
"""返回平均时间"""
return sum(self.times) / len(self.times)
def sum(self):
"""返回时间总和"""
return sum(self.times)
def cumsum(self):
"""返回累计时间"""
return np.array(self.times).cumsum().tolist()
def accuracy(y_hat, y):
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = argmax(y_hat, axis=1)
cmp = astype(y_hat, y.dtype) == y
return float(reduce_sum(astype(cmp, y.dtype)).cpu())
def evaluate_accuracy(net, data_iter, device=None):
"""计算在指定数据集上模型的精度"""
metric = Accumulator(2) # 正确预测数、预测总数
net.eval()
with torch.no_grad():
for X, y in data_iter:
X, y = X.to(device), y.to(device)
metric.add(accuracy(net(X), y), size(y))
return metric[0] / metric[1]
def evaluate_accuracy_gpu(net, data_iter, device=None):
"""计算在指定数据集上模型的精度"""
if isinstance(net, nn.Module):
net.eval()
if not device:
device = next(iter(net.parameters())).device
metric = Accumulator(2) # 正确预测数、预测总数
net.eval()
with torch.no_grad():
for X, y in data_iter:
if isinstance(X, list):
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def use_svg_display():
"""使用svg格式在Jupyter中显示绘图
Defined in :numref:`sec_calculus`"""
backend_inline.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)):
"""设置matplotlib的图表大小
Defined in :numref:`sec_calculus`"""
use_svg_display()
plt.rcParams['figure.figsize'] = figsize
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴
Defined in :numref:`sec_calculus`"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点
Defined in :numref:`sec_calculus`"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else plt.gca()
# 如果X有一个轴,输出True
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
class Animator:
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
"""Defined in :numref:`sec_softmax_scratch`"""
# 增量地绘制多条线
if legend is None:
legend = []
use_svg_display()
self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
class Accumulator:
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def get_dataloader_workers():
return 4
def load_data_fashion_mnist(batch_size, resize=None):
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
def init_weight(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weight)
print('training on', device)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = Animator(xlabel='epoch',xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test_acc'])
timer, num_batches = Timer(), len(train_iter)
for epoch in range(num_epochs):
metric = Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], accuracy(y_hat, y),X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches //5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'epoch {epoch + 1}, train_l={train_l:.5f}, test_acc={test_acc:.5f}')
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on {str(device)}')
def try_gpu():
if torch.backends.mps.is_available():
return torch.device("mps")
elif torch.cuda.is_available():
return torch.device("cuda")
else:
return torch.device("cpu")
device = try_gpu()
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10)
)
lr, num_epochs = 0.9, 10
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
timer = Timer()
train_ch6(net, train_iter, test_iter, num_epochs, lr, try_gpu())
print(f'train takes {timer.stop():.2f} sec')
结果如下:
epoch 10, train_l=0.49363, test_acc=0.80840
loss 0.494, train acc 0.812, test acc 0.808
30582.1 examples/sec on mps
train takes 65.80 sec

可以看到其准确率并不比线性模型和多层感知机更高。如果想进一步提高准确率,需进一步调整LeNet的参数,如学习率,学习批次,训练次数等,大家自己尝试一下。经过测试,学习率越低,似乎效果更差一些。

被折叠的 条评论
为什么被折叠?



